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Abstract. API4KP (API for Knowledge Platforms) is a standard de-
velopment effort that targets the basic administration services as well
as the retrieval, modification and processing of expressions in machine-
readable languages, including but not limited to knowledge represen-
tation and reasoning (KRR) languages, within heterogeneous (multi-
language, multi-nature) knowledge platforms. KRR languages of concern
in this paper include but are not limited to RDF(S), OWL, RuleML and
Common Logic, and the knowledge platforms may support one or sev-
eral of these. Additional languages are integrated using mappings into
KRR languages. A general notion of structure for knowledge sources is
developed using monads. The presented API4KP metamodel, in the form
of an OWL ontology, provides the foundation of an abstract syntax for
communications about knowledge sources and environments, including
a classification of knowledge source by mutability, structure, and an ab-
straction hierarchy as well as the use of performatives (inform, query,
...), languages, logics, dialects, formats and lineage. Finally, the meta-
model provides a classification of operations on knowledge sources and
environments which may be used for requests (message-passing).

1 Introduction

The inherent complexity of many application domains - including but not lim-
ited to finance, healthcare, law, telecom and enviromental protection - paired
with the fast pace of innovation, requires increasingly robust, scalable and main-
tainable software solutions. Design patterns have shifted from monolithic appli-
cations towards distribution and service-orientation. Standards have been pub-
lished to improve interoperability. Model driven architectures (MDA) have been
adopted to support declarative, platform-independent specifications of an appli-
cation’s business logic [7]. A special type of MDA, Knowledge Driven Architec-
tures (KDA) [13], rely on models such as ontologies that are not only standard,
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but also have a formal grounding in KRR. KDA, while not yet ubiquitous, have
a variety of applications. We consider as a running example a scenario from the
healthcare domain.

A connected patient system gathers input from biomedical devices, part of a
publish-subscribe architecture, which post observations including physical quan-
tities, spatio-temporal coordinates and other context information. The data can
be represented in a device-specific format (e.g. using XMPP6) or as streams of
RDF graphs over time. The vocabularies referenced in the streams include units
of measure, time, geospatial and biomedical ontologies, expressed in RDF(S),
OWL or Common Logic (CL). Healthcare providers will submit SPARQL queries
and receive incremental streams as new data becomes available. A Clinical De-
cision Support System (CDS), implemented using event-condition-action (ECA)
rules, will also react to events simple (e.g. a vital parameter exceeding a thresh-
old) and complex (e.g. a decreasing trend in the average daily physical activ-
ity) and intervene with alerts and reminders. If an alert is not addressed in a
timely fashion, it will escalate to another designated recipient. Some patients will
qualify for clinical pathways and the system will maintain a stateful representa-
tion of their cases, allowing clinicians to check for compliance with the planned
orders (e.g. drug administrations, tests, procedures, . . . ). This representation
will include an ontology-mediated abstraction of the patient’s electronic medical
record, extracted from the hospital’s database. As medical guidelines evolve, the
logic of the pathway may need revision: queries to the patient’s history should
be contextualized to whatever logic was valid at the time orders were placed.

From a systems-oriented perspective communicating entities in distributed
systems are processes (or simple nodes in primitive environments without fur-
ther abstractions) and from a programming perspective they are objects, com-
ponents or services/agents. They may be single-sorted or many-sorted, with
sorts being characterized by the kind of communications that may be initi-
ated, forwarded or received, and by the kind of entity that may be received
or forwarded from or sent to. Communication channels may in general be many-
to-many and uni- or bidirectional. Each communication has a unique source;
multi-source communications are not modelled directly, but are emulated by
knowledge sources that publish streams that may be merged to give the appear-
ance of multiple sources. We will allow for failure, either in communication or
in execution, but do not specify any particular failure recovery strategy. Var-
ious types of communication paradigms are supported from strongly-coupled
communication via low-level inter-process communication with ad-hoc network
programming, loosely coupled remote invocation in a two-way exchange via in-
terfaces (RPC/RMI/Component/Agent) between communicating entities, to de-
coupled indirect communication, where sender and receiver are time and space
uncoupled via an intermediary such as a publish-subscribe and event processing
middleware. The communication entities fulfill different roles and responsibilities
(client, server, peer, agent) in typical architectural styles such as client-server,
peer-to-peer and multi-agent systems. Their placement (mapping) on the phys-

6 http://xmpp.org/rfcs/rfc3920.html
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ical distributed infrastructure allows many variations (partitioning, replication,
caching and proxing, mobile) such as deployment on multiple servers and caches
to increase performance and resilience, use of low cost computer resources with
limited hardware resources or adding/removing mobile computers/devices.

Given this variety of architectural requirements, an abstraction is required
to facilitate the interchange, deployment, revision and ultimately consumption
of formal, declarative pieces of knowledge within a knowledge-driven applica-
tion. In 2010 the Object Management Group (OMG) published the first formal-
ized set of KDA requirements in an RFP titled ”the API for Knowledge Bases
(API4KB)”. In 2014 the OMG published a second RFP titled ”Ontology, Model,
and Specification Integration and Interoperability (OntoIOp)” [9]. This second
RFP contains the requirements for a substantial part of the API4KB, and a
submission, called DOL [1] is near completion. To address the remaining aspects
of the RFP, a working group is creating a standard meta-API, called API4KP,
for interaction with the Knowledge Platforms at the core of KDAs.

To provide a semantic foundation for the API4KP operations and their argu-
ments, we have created a metamodel of knowledge sources and expressed it as an
OWL ontology7. The primary concepts of the API4KP metamodel are described
in Sec. 2, with details for structured knowledge resources and their relationship
to nested functor structures in Sec. 3. In Sec. 4 we provide an application of the
metamodel to the healthcare scenario. Related work is discussed in Sec. 5, with
conclusions and future work described in Sec. 6.

2 Upper-level Concepts and Basic Knowledge Resources

The current API4KP metamodel focuses on the notion of knowledge resources,
the environment where the resources are to be deployed and their related con-
cepts. The metamodel is hierarchical, with a few under-specified concepts at the
upper levels, and more precisely defined concepts as subclasses. These upper-
level concepts indicate, at a coarse level, the kinds of things that are in the
scope of API4KP. The main upper-level concepts in the API4KP metamodel are

Knowledge Source: source of machine-readable information with semantics.
Examples: a stream of RDF graphs providing data from biomedical devices,
a stateful representation of a patient’s history with OWL snapshots, or a
database with a mapping to an ontology.

Environment: mathematical structure of mappings and members, where the
domain and codomains of the mappings are members of the environment. Ex-
ample: a KRR language environment containing semantics-preserving trans-
lations from RDF and OWL into CL, assisting in the integrated interpreta-
tion of a stream of RDF graphs and OWL ontologies.

Knowledge Operation: function (possibly with side-effects. i.e. effects beyond
the output value returned) having a knowledge source, environment or oper-
ation type in its signature. Examples: publishing or subscribing to a stream

7 https://github.com/API4KBs/api4kbs

https://github.com/API4KBs/api4kbs
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of RDF graphs; submitting a SPARQL query; initiating an ECA Rulebase;
checking for compliance with plans; revising an ontology of guidelines.

Knowledge Event: successful evaluation or execution of a knowledge opera-
tion by a particular application at a particular time8 Examples: when a nurse
activates a biomedical device, a stream of RDF graphs is “published” describ-
ing a patient’s vital signs; a specialist, like a cardiologist, taps the heartrate
symbol on a touchscreen that results in the submission of a SPARQL query
about a semantically-defined subset of a patient’s vital signs.

These definitions are intentionally vague so as to be adaptable to a vari-
ety of implementation paradigms. We have developed a hierarchy of knowledge
source level of abstraction that is a generalization of the FRBR [3] Work-
Expression-Manifestation-Item (WEMI) hierarchy of abstraction tailored for
machine-readable KRR languages. The fundamental building blocks of knowl-
edge sources are basic knowledge resources, which are immutable knowledge
sources without structure. Subclasses of basic knowledge resources are defined
according to their knowledge source level.

Basic Knowledge Expression: well-formed formula in the abstract syntax of
a machine-readable language.9 Example KE1: the instance of the OWL 2
DL abstract syntax for the latest version of a biomedical ontology from an
ontology series KA1 defining observable entities, such as the 2015 interna-
tional version of the SNOMED-CT knowledge base10 (see also the definition
of Basic Knowledge Asset below). This ontology differs from other versions
of the series only in the natural language definitions.

Basic Knowledge Manifestation: character-based embodiment of a basic knowl-
edge expression in a concrete dialect. Example KM1: the OWL/RDF XML
Document Object Model (DOM) document instance of example KE1.

Basic Knowledge Item: single exemplar of a basic knowledge manifestation
in a particular location. Example KI1: a file on a network server embodying
example KM1.

Basic Knowledge Asset: equivalence class of basic expressions determined by
the equivalence relation of an asset environment (see Sec. 2.2.) Example KA1:
an OWL2 DL series for a biomedical ontology, viewed as an equivalence
class of basic knowledge expressions, including example KE1, according to
a semantics-preserving environment for the OWL2 DL language where the
mapping to the focus language strips the natural language definitions from
the axioms.

8 Some Knowledge Operations can be used as transition functions for a mutable knowl-
edge source, where their evaluation describes an event in the sense of [14], as a state
transition of a dynamic entity; we generalize this concept of events because not all
API4KP Knowledge Events correspond to state transitions.

9 The use of ”basic” in API4KP differs from its usage in DOL - a DOL basic OMS
(ontologies, models and specifications) is a set, and corresponds to a Set-structured
knowledge asset in API4KP.

10 http://browser.ihtsdotools.org/
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API4KP lifting/lowering operations (see 2.4) provide transformations from
one level to another complying with the following relations:

exemplify: to instantiate (a knowledge manifestation) in particular format(s)
and at particular location(s) (address in some virtual address space). Exam-
ple: KI1 exemplifies KM1, KM1 prototypes KI1. Inverse: prototype

embody: to represent (a knowledge expression) in concrete syntax(es) (dialects)
of particular KRR language(s). Example: KM1 embodies KE1, KE1 parses
KM1. Inverse: parse

express: to represent (a knowledge asset) in abstract syntax(es) of particular
KRR language(s). Example: KE1 expresses KA1, KA1 conceptualizes KE1.
Inverse: conceptualize

2.1 Mutability

Following RDF concepts11, knowledge sources are characterized as mutable or
immutable. Immutable knowledge sources are called knowledge resources. In this
context, immutable does not necessarily mean static; a stream of knowledge, e.g.
a feed from a biomedical device, may be considered an observable knowledge re-
source that is revealed over time, as described further in Sec. 3. A mutable knowl-
edge source is a container that has, at any point in time, an explicit state that is
fully represented by a knowledge resource, e.g. the snapshot of a patient’s current
condition (with timestamp). The language, structure and content of a mutable
knowledge source may change over time, but the abstraction level is unchanging.
We distinguish between the implicit state that a mutable knowledge source holds
indirectly when operators such as actions, complex event patterns or aggrega-
tions are computed, and the explicit state that evolves with time and that can
be managed explicitly by an additional state transformer component responsi-
ble for explicit state management, concurrency control, reasoning (specifically,
inference of state deltas), and state updates. There are various ways to manage
explicit state, e.g. embedded inside the processors of the knowledge source in
global variables or state-accumulating variables or tuples that are available ei-
ther locally to an individual operator or across the operators as a shared storage,
or with explicit state and concurrency control which lies outside of knowledge
resource processors, e.g. by threading the variables holding state through a func-
tional state transformer and by using State monads (see 3), which exist within
the context of another computation or transformation, thus allowing to attach
state information to any kind of functional expression.

2.2 Environments

In DOL, a concept of heterogeneous logical environment is defined as ”environ-
ment for the expression of homogeneous and heterogeneous OMS, comprising a
logic graph, an OMS language graph and a supports relation”. In API4KP, we
generalize this concept of environment as follows.

11 http://www.w3.org/TR/rdf11-concepts/
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Categorical Environment: environment with an associative composition op-
eration for mappings, that is closed under composition and contains an iden-
tity mapping for every member

Language Environment: environment whose members are languages

Focused Environment: nonempty environment which has a member F (called
the focus or focus member) such that for every other member A, there is a
mapping in the environment from A to F

Preserving Environment: environment where every mapping preserves a spec-
ified property

Asset Environment: focused, categorical, preserving language environment
where the focus is a KRR language

The special case where all languages in an asset environment are KRR languages
supporting model-theoretic semantics without side-effects (logics), and the pre-
serving property is characterized by a logical graph reduces to a heterogeneous
logical environment as defined in DOL.

The Knowledge Query and Manipulation Language [2] introduced the con-
cept of performatives, which was later extended by FIPA-ACL12. The KRR
Languages covered by API4KP include ontology languages (e.g. OWL), query
languages (e.g. SPARQL), languages that describe the results of queries, events
and actions (e.g KR RuleML), and declarative executable languages (e.g. Pro-
log, ECA RuleML). In the latter case, the languages typically includes syntactic
constructs for performatives, e.g. inform, query, and the description of a knowl-
edge resource may include a list of the performatives that are used within it.
Performatives will be modelled as operations as defined in Sec. 2.4.

2.3 Descriptions

As stated above, we do not make assumptions regarding the drivers for com-
munications, e.g. an implementation may be message-driven, event-driven, or a
combination of both. However, our metamodel takes a message-centric perspec-
tive, with the message body typically being a description of a knowledge source
or a knowledge operation.

A knowledge source description is a knowledge resource whose subject matter
is another knowledge source, which may be expressed, e.g., as an OWL ontol-
ogy of individuals or an RDF graph. The properties and classes in the API4KP
namespace that may be employed in knowledge source descriptions are listed in
the following tables and formalized in the API4KP OWL ontologies. Further,
IRIs in other namespaces may be used to express metadata within a knowledge
source description. A description about the description itself may be referenced
through an IRI, or included within the description explicitly through the :has-
Description property, OWL annotations, or as an RDF dataset.

12 http://www.fipa.org/repository/aclspecs.html
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Key Value

Y exactly 1

Yor 1 or more

Y? 0 or 1

Y* 0 or more

N exactly 0

I[or?*] indirect
Table 1. Legend

Prefix Expansion

: http://www.omg.org/spec/API4KP/API4KPTerminology/

ks: :KnowledgeSource/

kr: :KnowledgeResource/

ka: kr:Asset/

ke: kr:Expression/

km: kr:Manifestation/

ki: kr:Item/

lang: :Language/

map: :Mapping/

xsd: http://www.w3.org/2001/XMLSchema#

Table 2. Prefix Mappings

Property Range ka: ke: km: ki:

:hasIdentifier :Identifier Y? Y? Y? Y?

:level ks:Level Y Y Y Y

:usesPerformative :Operation I* Y* I* I*

:hasLocator :Address Y? Y? Y? Y

:usesLanguage :Language I* Y* I* I*

:usesDialect km:Dialect N N Y* I*

:usesConfiguration ki:Configuration N N N Y*

:accordingTo lang:Environment Y N N N

:isBasic xsd:boolean Y Y Y Y

:isOutputOf ev: Y? Y? Y? Y?

:hasMetaData :KnowledgeResource Y* Y* Y* Y*

:hasDescription :KnowledgeResource Y* Y* Y* Y*
Table 3. Knowledge Resource Metamodel

2.4 Operations and Events

In the API4KP metamodel, the building blocks for all knowledge operations are
actions – unary functions, possibly with side-effects and possibly of higher-order.
Actions are defined in terms of their possible events. To maintain a separation of
concerns, side-effectful actions are assumed to be void, with no significant return
value. Particular kinds of actions include:

Lifting Action: side-effect-free action whose output is at a higher knowledge
source level than the input

Lowering Action: side-effect-free action whose output is at a lower knowledge
source level than the input

Horizontal Action: side-effect-free action whose output is at the same knowl-
edge source level as the input

Idempotent Action: side-effect free action that is equal to its composition
with itself (A = A o A)

Higher-Order Action: side-effect-free action whose input or output (or both)
is an action

http://www.omg.org/spec/API4KP/API4KPTerminology/
http://www.w3.org/2001/XMLSchema#
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Property Domain Range Inverse

:exemplify (?) ki: km: :prototype (*)

:embody (?) km: ke: :parse (*)

:express (*) ke: ka: :conceptualize (*)
Table 4. Knowledge Resource Elevation Properties

Property Range ke:Language km:Dialect ki:Configuration

:hasIdentifier :Identifer Y Y Y

:hasLocator :Address N N Y?

:supports :Logic Y I I

:usesLanguage ke:Language N Y I

:usesDialect km:Dialect N N Y

:usesFormat ki:Format N N Y

:location :Address N N Y
Table 5. Knowledge Resource Configuration Metamodel

Lifting and lowering are utility actions for changing the knowledge source level,
e.g. parsing and IO. Horizontal actions are useful e.g. for constructing struc-
tured knowledge sources, while higher-order actions are needed to specify more
complex operations e.g. querying.

In the metamodel, we define two void actions that have side-effects on the
state of mutable knowledge resources:

Put: void action whose input is a mutable knowledge source and has the side-
effect of setting the mutable knowledge source to a particular specified state

Update: void action whose input is a mutable knowledge source and has the
side-effect of setting the mutable knowledge to a new state that is the result
of applying a side-effect-free action to the current state

A side-effectful operation can be considered idempotent if its successful ex-
ecution multiple times (synchronously) leads to no additional detectable side-
effects beyond that of the first execution. Note that this is a different, but related,
concept of idempotence than that for side-effect-free actions. An Update action
based on an idempotent side-effect-free action is idempotent in this sense, an
important factor in failure recovery.

3 Structured Knowledge Resources

We generalize the DOL concept for structured OMS to define a concept of struc-
tured knowledge resource for each level of abstraction. In DOL, a structured
OMS “results from other basic and structured OMS by import, union, combi-
nation, ... or other structuring operations”. In API4KP, A structured knowledge
resource is a collection whose components are knowledge resources of the same
level of abstraction; structuring knowledge operations are described in Sec. 2.4.
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Property Range T:Environment

:hasIdentifier :Identifier Y?

:mapping T:Mapping Y*

:focus T: Y?

:preserves T:EquivalenceRelation Y*

:isOutputOf ev: Y?
Table 6. Generic Environment Metamodel. The generic prefix T: specifies the member
type. Specific environments include lang:Environment (a system of mappings between
the abstract syntax of languages) .

Property Range T:Mapping

:hasIdentifier :Identifier Y?

:location :Address Y?

:start T: Y

:end T: Y

:preserves :EquivalenceRelation Y*

:usesLanguage map:Language Y*

:isBasic xsd:boolean Y

:components T:MappingList Y?
Table 7. Generic Mapping Metamodel

Structured Knowledge Expression: collection of knowledge expressions (ei-
ther structured or basic), which are not necessarily in the same language and
may themselves have structure. Example KE2: a heterogeneous collection of
streaming data and RDF graphs, together with static OWL ontologies and
CL texts, and ECA rules describing actions of a CDS. Example KE3: the
OWL 2 DL ontology series KA1, viewed as a collection of expressions rather
than an equivalence class.

Structured Knowledge Manifestation: collection of knowledge manifesta-
tions (either structured or basic), which are not necessarily in the same
language or dialect and may themselves have structure. Example KM2: a
heterogeneous structure of RDF Turtle, OWL Manchester as sequences of
string tokens, and XMPP, OWL/XML, ECA RuleML and CL XCL2 (the
XML-based dialect of Common Logic Edition 2) as XML DOM documents
embodying example KE2.

Structured Knowledge Item: collection of knowledge items (either struc-
tured or basic), which are not necessarily in the same language, dialect,
format or location, and may themselves have structure. Example KI2: a het-
erogeneous structure of an RDF triple store, network connections to binary
input streams cached in a MySQL database, RuleML XML files on a local
hard drive and CL XCL2 files on a network server in a content management
system, exemplifying example KM2.

Structured Knowledge Asset: collection of knowledge assets (either struc-
tured or basic), which are not necessarily according to the same environment,
but where there is a unique language that is the focus of the environment of
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Property Domain Range Inverse

:hasEvent (*) op: ev: :isEventOf (1)

:executes (*) :Application ev: :isExecutedBy (1)

:input (?) ev:ActionEvent : :isInputOf (*)

:output (?) ev: : :isOutputOf (?)

:atTime (1) ev: xsd:dateTime
Table 8. Knowledge Resource Operation and Event Properties

each component. Example KA2: a heterogeneous structure of assets concep-
tualized from the RDF, OWL and CL expressions of example KE2 according
to an environment that provides translations from RDF or OWL into CL,
and an ontology-based data access (OBDA) source schema providing a map-
ping from XMPP schemas to OWL.

To assist in defining operations on structured knowledge sources while still
maintaining generality, the collection structure of a structured knowledge re-
source is required to arise from a monadic functor (monad). Collection structures
that satisfy these requirement include sets, bags and sequences, but other useful
structures also meet these requirements.

3.1 Monads

In seminal work that established a theoretical foundation for proving the equiva-
lence of programs, Moggi [8] applied the notion of monad from category theory [5]
to computation. As defined in category theory, a monad is an endofunctor on a
category C (a kind of mapping from C into itself) which additionally satisfies
some requirements (the monad laws). In functional programming, monads on
the category with types as objects and programs as arrows are employed. For
example, the List[ ] typeclass is a monad, e.g. List[Int], a list of integers, is a
type that is a member of the List[ ] monad.

Each monad M has functor M and two natural transformations as follows
(exemplified for the List monad where lists are denoted with angle brackets)

– unit: A ⇒ M[A] lifts the input into the monad (e.g. unit(2) = 〈2〉)
– join: M[M[A]]⇒ M[A] collapses recursive monad instances by one level (e.g.

join(〈〈1, 2〉, 〈3, 4〉〉) = 〈1, 2, 3, 4〉)
– M : (A ⇒ B) ⇒ (M[A] ⇒ M[B]) takes a function between two generic types

and returns a function relating the corresponding monadic types (e.g. List(
s ⇒ 2*s)(〈1, 2〉) = 〈2, 4〉)

Note that we choose the category-theory-oriented unit and join transformations
[16] as fundamental in this development of the monad laws because it is useful for
later discussion on structured expressions, whereas the functional-programming-
oriented treatment based on unit and bind :≡ join o M (aka flatmp), is more
concise. Monads of relevance to API4KP include, but are not limited to

Try: handles exceptions, has subclasses Success, which wraps a knowledge re-
source, and Failure, which wraps a (non-fatal) exception
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IO: handles IO side-effects, wraps a knowledge resource and an item configura-
tion

Task: handles general side-effects, wraps a knowledge resource and a description
of a side-effectful task

Stream: a.k.a. Observable handles concurrent streams, wraps a sequence of
knowledge resources that become available over time

State: handles state, wraps a knowledge resource (the state) and implements
state transitions

These monad functors may be composed; for example, given a basic knowledge
expression type E, the type (State o Try o List) [E] :≡ State[Try[List[E]]] may
be defined. In general, the composition of monads is not necessarily a monad.

3.2 Nested Monadic Structures

In DOL, the concept of structured expression using sets is introduced. For exam-
ple, let B be the category of (basic) CL text expressions, and OptionallyNested-
Set[B] :≡ B + NestedSet[B], where NestedSet[B] :≡ Set[OptionallyNestedSet[B]]
≡ Set[B + NestedSet[B]] is the recursive type definition of set-structured CL ex-
pressions. An instance of type NestedSet[B] is a Set whose members are either
basic leaves (of type B) or structured branches (of type NestedSet[B]).

The Set monad is appropriate for defining structured expressions in mono-
tonic logics, like CL, because the order and multiplicity of expressions in a col-
lection has no effect on semantics. The semantics of CL is provided by the CL
interpretation structure that assigns a truth-value to each basic CL text expres-
sion. The truth-value of a set of CL text expressions is true in an interpretation J
if each member of the set maps to true in J . The truth value J(y) of a NestedSet-
structured CL expression y is defined to be J(flatten(y)), where flatten(y) is the
set of leaves of y.

We generalize this approach for defining the semantics of structured expres-
sions to an arbitrary language L with basic expressions E and NestedM struc-
tured expressions. We assume that

– M is a monad on the category of types,
– model-theoretic semantics is supplied through an interpretation structure J

defined for basic expressions in E and simply-structured expressions M[E +
0], where 0 is the empty type.

– a post-condition contract for side-effects is specified by a truth-valued func-
tion P(F, y) for all supported void knowledge actions F and all y in E +
M[E + 0].

Let N[ ] be the NestedM monad corresponding to the minimal (finite) fixed
point of N[E] :≡ M[E + N[E]], where A + B is the coproduct13 of types A and

13 The coproduct, a.k.a. disjoint union, A + B can be treated as the type (False x A) |
(True x B), with the first (Boolean) argument of the pair providing the intention of
left or right injection (inl and inr). The operation f + g on functions f and g means
(f+g)(inl(a)) :≡ f(a) and (f+g)(inr(b)) :≡ g(b).



12 Tara Athan Roy Bell Elisa Kendall Adrian Paschke Davide Sottara

B. We name the NestedM monad by prepending “Nested” to the name of the
underlying monad; thus, NestedSet[E] :≡ Set[E + NestedSet[E]].

If E is a type of basic knowledge resources, then the monad OptionallyNest-
edM[E] :≡ E + NestedM[E] ≡ E + M[OptionallyNestedM[E]] is the correspond-
ing type of knowledge resources that are either basic or structured. We note that
OptionallyNestedM[E] is a free monad14 of M; this property holds for a large
class of functors and does not depend on M being a monad.

NestedM is also a monad under an appropriate join transformation; this
property does depend on M being a monad. Further, we take advantage of the
monadic properties of M in order to “flatten” the nested structure for purposes
of interpretation and pragmatics. The unit, map and join functions for NestedM
are defined in terms of the unit, join, and map functions for monad M, and
the constructors, recursor and bimap function of the coproduct. The details and
proof15 that NestedM structures satisfy the monad laws depends on the use of
the coproduct to handle the union of types, so that the left or right intention is
indicated even in the case when the types are not disjoint.

For all y ∈ Q[E] :≡ OptionallyNestedM[E], we define a flatten transformation
flatten(y). Let I be the identity transformation, N[E] :≡ NestedM[E], joinN be
the join natural transformation of monad N, Q1 :≡ E + M[E + 0], and

joinN: N[N[E]] ⇒ N[E] 3 joinN :≡ joinM o M( I + unitM o inr o joinN)
level: Q[E] ⇒ N[E] 3 level :≡ unitM ◦ inl + I
flatten: Q[E] ⇒ Q1[E] 3 flatten(y) = y if y ∈ Q1[E],

flatten(y) = flatten( joinN ◦ M(inl ◦ level)(y)) otherwise

Then for all y ∈ Q[E], we may define the interpretation J(y) :≡ J(flatten(y)),
with entailments defined accordingly. Implementations that honor the semantics
must satisfy P(F)(y) = P(F)(flatten(y)), where P(F) is a function representing
the post-conditions after execution of side-effectful knowledge operation F on
the knowledge resource y.

The monad laws and the flatten transformation have been verified experimen-
tally for NestedSet and NestedList monads by implementation in Java8 together
with the Functional Java16 libraries, with the source available on Github17. In-
formal tests confirm that the map and join operations are linear in the size of
the collection, as expected.

3.3 Heterogeneous Structures

Suppose A and B are expression types of two languages where an environment
provides a semantics-preserving transformation T from B to A. Further suppose
that an interpretation mapping is defined on A + M[A + 0]. The coproduct E
:≡ A + B defines the basic knowledge expressions in this environment, while

14 http://ncatlab.org/nlab/show/free+monad
15 https://github.com/API4KBs/api4kbs/blob/currying/Monad_Trees.pdf
16 http://www.functionaljava.org/
17 https://github.com/ag-csw/Java4CL

https://github.com/API4KBs/api4kbs/blob/currying/Monad_Trees.pdf
https://github.com/ag-csw/Java4CL
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structured expressions are N[E] :≡ NestedM[E], and the coproduct Q[E] :≡ E +
N[E] is the type for all expressions in this environment, basic or structured.

Using the transformation T from the environment, we may define the in-
terpretation J+ of structured expressions of type NestedM[A+B] in terms of
the interpretations J of basic expressions in A and structuring operations. In
particular,

J+(x) :≡ J( NestedM(T + I)(flatten(x)) ) ≡ J(flatten(NestedM(T + I)(x)) )

Notice that the expressions of type B are not required to be in a knowledge
representation language. They could be in a domain-specific data model based
on, e.g., XML, JSON or SQL. The semantics of expressions of type B are derived
from the transformation to type A, the focus knowledge representation language
of the environment. API4KP employs this feature to model OBDA and rule-
based data access (RBDA).

Structured expressions can always be constructed in a monad that has more
structure than necessary for compatibility with the semantics of a given language.
For example, List and Stream monads can be used for monotonic, effect-free
languages even though the Set monad has sufficient structure for these languages;
a forgetful functor is used to define the semantics in the monad with greater
structure in terms of the monad of lesser structure. A heterogeneous structure
of languages containing some languages with effects and others without effects
(e.g. an ECA rulebase supported by ontologies) could thus make primary use of
an NestedM monad that preserves order, such as NestedList or NestedStream,
while permitting some members of the collection to have a NestedSet structure.

While an immutable knowledge source (i.e. a knowledge resource) has a spe-
cific structure, as discussed above, a mutable knowledge source has structure
only indirectly through the structure of its state. In general, the structure of a
mutable knowledge source’s state changes arbitrarily over time, but could be re-
stricted in order to emulate common dynamic patterns. Simple examples include
state as a basic knowledge resource (linear history without caching), a key-value
map with values that are basic knowledge resources (branching history without
caching), or a sequence of basic knowledge resources (linear cached history).

4 Metamodel Appplied to the Scenario

In the connected patient scenario, an RDF stream from a biomedical device
can be modelled using a Stream monad. A query registered against this RDF
Stream will generate another Stream, with each Stream item containing addi-
tions (if any) to the query results due to the assertion of the newly-arrived graph.
Because RDF has monotonic semantics, the accumulated query results will al-
ways be equivalent to the result of the query applied to the accumulated graphs
of the stream. Cumulative queries and other cumulative operations on Streams
may be implemented through fold operations, while windowing and filtering
are implemented through map. The connected-patient system uses a heteroge-
neous language environment to map input XMPP data from biomedical devices
into a KRR language, e.g. RDF, employing terms from a vocabulary defined in
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a common ontology. Thus streaming data may be transformed into streaming
knowledge which is queryable as discussed in the previous item. The structure
of this system may be modelled as a NestedSet of Streams, since each device
streams its output asynchronously. State, Task and IO monads are appropriate
to the use case of an active knowledge base where evaluation of an operation
leads to side-effects; the choice of monad depends on the nature of the side-effects
and the implementation. Equivalence of such knowledge resources requires not
only the same entailments, but also side-effects that are equivalent. The CDS
monitoring our connected patient may be modelled using a State monad, where
the sending of a message is a side-effect. The connected patient’s case history
may be modelled as a mutable knowledge asset because of the possibility of cor-
rection of the history without a change of case identifier. The modular nature
of medical records is amenable to NestedSet (a set of laboratory test results) or
NestedList (a procedure performed) structures. Although some aspects, such as
the addition of new medical orders, would fit with the Stream structure, queries
of the case history are not expected to produce streaming results, and so the
mutable asset model is a better fit than a Stream-based model. Failure recovery
in the CDS alert system may be modelled using the Try monad, so that results
can be reported as Success or Failure. A Success response is a wrapper around
a result from the successful execution of a request. A Failure response includes
information about the nature of the failure (e.g. timeout exception) so that the
system can recover appropriately, e.g. by escalating to another recipient. A pos-
sible extension of the CDS which allows a streaming model in combination with
explicit state management and concurrency follows an implementation [4] that
was demonstrated for sports competitions using the Prova rule engine18.

5 Related Work

While various APIs and interface languages for different knowledge platforms
and representation languages exist19, API4KP provides a unified abstract API
metamodel. Also, various ontologies and semantic extensions for Semantic Web
Service interfaces 20 as well as REST interfaces 21 exist. None of them is specific
to APIs for knowledge platforms and services in general. Some works present
operations on structured knowledge bases (e.g. [15]), but are not exposed using
APIs. General top-level ontologies and general model-driven architecture and
software engineering metamodels have certain overlaps with the concepts used in
API4KP, but fulfill a different purpose. They can be used for the representational
analysis of API4KP. [10]. From a conceptual point of view reference models and

18 https://prova.ws/
19 e.g., OWL API , JSR-94 , Linked Data Platform , RuleML Rule Responder IDL ,

OntoMaven and RuleMaven , FIPA ACL , CTS-2
20 e.g., OWL-S, WSDL-S, SAWSDL, SWWS / WSMF, WSMO / WSML, Meteor-S,

SWSI
21 Semantic URLs, RSDL, SA-Rest, Odata
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reference architectures 22 for knowledge platforms are related and API4KB can
be used in such reference architectures for the description of functional interfaces
and component APIs.

So, DOL is the most closely related endeavor. The API4KP metamodel in-
troduces the following generalizations of DOL concepts:

– Knowledge sources can have different levels of abstraction. DOL’s OMS con-
cept correspond to knowledge expressions, while we consider also the levels
of asset, manifestation and item.

– Knowledge sources can be mutable or immutable. DOL’s OMS correspond
to immutable knowledge expressions.

– Each API4KP knowledge asset is conceptualized according to a customizable
environment, instead of assuming a single logical environment in which all
OMS are interpreted.

– Environment members can be any language with an abstract syntax, instead
of requiring each member to have a specific semantics. Only the focus of the
environment is required to have its own semantics.

– Semantics is generalized to include side-effects as well as logical entailment.
– Structured knowledge resources may have structures other than nested sets.

The variety of monad structures necessary to model the diversity of usecases
demonstrates that a high level of abstraction is needed to define operations for
modifying knowledge resources - adding, subtracting or modifying. Category
theory provides the tools for these abstractions, through applicative functors
(a generalization of monads having a binary operator allowing a structure of
functions to be applied to another structure), catamorphisms (generalization of
aggregation over a list to other monads) and anamorphisms (e.g. generation of
a list from a seed and recursion formula) [6].

6 Conclusion and Future Work

The primary contributions of this paper are two-fold: (i) a metamodel of het-
erogeneous knowledge sources, environments, operations and events, providing
an abstract syntax for interaction with the Knowledge Platforms at the core of
KDAs and (ii) a structure of nested monads, as the conceptual basis of struc-
tured knowledge resources in the metamodel, supporting modularity, state man-
agement, concurrency and exception handling. We have used a scenario from
healthcare to show the kinds of complexities that will be needed and that our
metamodel in combination with monads will meet this challenge. The healthcare
scenario brought up things such as input RDF streams, heterogeneous language
environments, and mutable persistent storage, and we have shown how they will
be accomplished. Future work on API4KP may include a generalization of the
approach to include structures based on applicative functors, and operations in
terms of catamorphisms and anamorphisms, as well as the population of the
ontology with specifications of additional operations, especially querying and
life-cycle management.

22 e.g., the EPTS Event-Processing Reference Architecture [11] and the EPTS/RuleML
Event Processing Standards Reference Model [12]
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