DIDO RA

Table of Contents
Abstract	5
Preface	5
1	Distributed Immutable Data Objects (DIDO)	5
1.1	Data Flow	5
1.2	DIDO Architecture	6
2	DIDO Network Topology	7
2.1	Architecture Nodes Models	8
2.1.1	Centralized Model	8
2.1.2	Decentralized Model	9
2.1.3	Distributed Model	10
3	Reference Architecture	11
3.1	Definition	11
3.2	Current Status	11
3.3	Proposed DIDO Reference Architecture	11
3.4	Common Stack	13
3.4.1	General Characteristics and Attributes	14
3.4.1.1	System of Systems	14
3.4.1.2	Case Management	15
3.4.1.3	Software and Systems Assurance	15
3.4.1.4	System and Software Quality	17
3.4.2	Standard Measures of System and Software	20
3.4.2.1	Automated Characteristic Measurements	21
3.4.2.2	Automated Tools	22
3.4.2.3	Standards for Automated Quality Characteristic Measures	22
3.4.3	Secure Messaging Layer	23
3.4.3.1	Transport	24
3.4.3.2	Security	24
3.4.3.3	Messaging	26
3.4.4	Tools and Interfaces	27
3.5	The Ledger Stack	28
3.5.1	Blockchain Software	28
3.5.2	Smart Contracts	29
3.5.3	Transactions	34
3.5.4	Ledger	35
3.6	Global Data Stack	36
3.6.1	Web Applications	36
3.6.2	Distributed Applications	39
3.6.3	Operational Transforms	41
3.6.4	Global Data Objects	42
3.6.4.1	Extensible Markup Language Approach	42
3.6.4.2	Data Distribution Service (DDS)	43
4	Recommendations	43
5	Bibliography	44

List of Figures
Figure 1 The DIDO Reference Architecture (RA)	12
Figure 2The DIDO Secure Message Layer, Tools and Interfaces Components	13
Figure 3 ISO Defined Software Quality Characteristics	18
Figure 4 Automated Quaility Characteristic Measures Sprcifications	22
Figure 5 Hype and Smart Contracts	23
Figure 6 Impact of poor Systems and Software Level Architecture and Design	23
Figure 7 The Ledger Stack Components	28
Figure 8 The Global Data Objects Stack Components	36
Figure 9 The DIDO Reference Architecture Components	43
Figure 10 The DIDO RA Components with Identified Stanndards	44

[bookmark: _Toc491114261]Abstract
The Distributed Immutable Data Objects (DIDO) Reference Architecture (RA) defines a series of components representing blockchains, crypto-currencies, and distributed ledgers as well as defining the relationships between those components. The components do not reflect the actual components used in any implementation but creates a conceptual RA components covering blockchains, crypto-currencies and distributed ledgers with the ability to extend the definition beyond this limited subset to include as of yet undefined or poorly defined products. The RA provides a list of existing standards applicable to each component. When no standards were identified for a component, on a description of the component is provided. These RA components that have no standards associated with them represent gaps that should be addressed in future standards work.
[bookmark: _Toc491114262]Preface
This document tries to present a complete story associated with the RA. Much of the text was lifted directly from existing documents and have been properly attributed to those documents. It is not the intent of this document to represent this information as original. It is included to help reduce the amount of external cross referencing required to understand the RA. In many cases, this text intentionally comes directly from standards or specifications to preserve the original meanings provided by those documents. Re-writing the descriptive text can result in a misunderstanding of the original intent those standards and specifications. If you have ever been involved in the writing of a standard or a specification, you’ll be familiar with the long discussions and debates on the selection of each word and the punctuation that is used.
[bookmark: _Toc491114263]Distributed Immutable Data Objects (DIDO)
The Distributed Immutable Data Objects (DIDO) Reference Architecture (RA) is intended as an aid towards understand the recent (i.e., 2008) [1] [2] advent of the blockchain as a financial instrument used to transfer money between different uses without the need of centralized, authoritative services such as banks, credit unions or clearing houses. A core aspect of blockchains is the creation of a ledger that records the changes in state of items tracked by the ledger (Bitcoins, Ether, etc.). For example, in accounting, the ledger is used to keep track of the balance in accounts as deposits and debits are made to the account. Each change in the account state (i.e., debit or credit) is referred to as a transaction. Multiple copies of the account can be kept in different locations and if each transaction is made in the same sequence to the same initial account information, the current balance in all copies of the account are the same.
[bookmark: _Toc491114264]Data Flow
A generalized flow in the graphic illustrates events and flow of information and helps define and elucidate the difference between data held within the ledger, a transaction, a block, and a blockchain.
1. On a single Client Node within the blockchain community, a piece of Data is change from the value of “Happy” to “Glad”.
2. A Transaction is generated that describes the change that was made (i.e., entry number, account numbers, timestamp, etc.) which can be executed by any other instance of the ledger.
3. A Full Blockchain node adds the Transaction to a block along with other Transactions that need to be made to the Ledger.
4. Once the timer Blockchain Timer event fires, the blockchain is verified and validated as correct by a mining process by Mining Blockchain Nodes. The Mining Blockchain Node that gets the answer first is provided a reward.
5. Using a Proof-of-Work (PoW) or other consensus cryptographic algorithm the Canonical Block is added to the list of blocks in the blockchain.
6. The blocks are read from the blockchain by the Blockchain Nodes (Client, Full or Mining) and used to update local copies of the change captured in the original Transaction.
[image:]
[bookmark: _Toc491114265]DIDO Architecture	
The current state of the blockchain, crypto-currency and distributed ledger (collectively referred to as DIDO) is that it is currently wide open and often referred to as the “wild west” [3]. There are currently just under 1,000 different cryptocurrencies with a market cap of just under $90 billion. [4] Charles Hoskins [5], who helped found Ethereum, has said:
People say ICOs[footnoteRef:1] are great for Ethereum because, look at the price, but it’s a ticking time-bomb. There’s an over-tokenization of things as companies are issuing tokens when the same tasks can be achieved with existing blockchains. People are blinded by fast and easy money… [1: Initial Coin Offering (ICO) An unregulated means by which funds are raised for a new cryptocurrency venture. ... In an ICO campaign, a percentage of the cryptocurrency is sold to early backers of the project in exchange for legal tender or other cryptocurrencies, but usually for Bitcoin.]

Regulation is the biggest risk to the sector, as it’s likely that the U.S. Securities and Exchange Commission, which has remained on the side lines, will step in to say that digital coins are securities, he said…
…Start-ups raising money through ICOs usually skip the safeguards required in traditional securities sales, like making sure they’re dealing with accredited investors and verifying the source of funds. That could lead to lawsuits in the future, as digital coin buyers can sue the issuer claiming they didn’t know the risks of buying those assets
Not only is the lack of regulation a problem, CoinDash’s [6] ICO was interrupted because investors were instructed to buy Ether from Ethereum and send them to the site’s Smart Contract. However, the site’s address had been hacked and CoinDash lost $7 million dollars in a single day. Earlier in 2016, Ethereum itself was hacked by a Decentralized Autonomous Organization (DAO)[footnoteRef:2] use of a Smart Contract that cost $64 million dollars. [7] [2: Decentralized Autonomous Organization (DAO) - also labeled a Decentralized Autonomous Corporation (DAC), is an organization that is run through rules encoded as computer programs called smart contracts. A DAO's financial transaction record and program rules are maintained on a blockchain.]

[bookmark: _Toc491114266]DIDO Network Topology
DIDOs is a collective term that includes blockchains, crypto-currencies and distributed ledgers. They provide a decentralized and trust-less[footnoteRef:3], resilient, scalable and auditable, autonomous system with reliable and enduring data whose pedigree[footnoteRef:4] and provenance[footnoteRef:5] are irrefutable, undeniable, self-verifiable, and trusted. Blockchains and the advent of the electronic Cash System (i.e., Bitcoin) [1] [2] have come a long way in solving many of these issues, however, a solution is required which moves beyond simple almost instantaneous “cash transactions” to handling more complex, business processes required prior to the actual cash transaction. These business processes may span days to years, involve numerous individuals and are more than bi-lateral in nature. [3: Trust-less - since Blockchains are not controlled by a central authority, therefore, all transactions are validated and verified by consensus amongst peers, and there is no inherent trust in each other.] [4: Pedigree – is meta-data about a record of the ancestry of data and may include metric estimates about the reliability and confidence in the data. In other words, pedigree is about the “who” and “when” of ownership, transfer and transformation of data.] [5: Provenance – is meta-data about a record of the transformation of data such as inputs, entities, systems, and processes that influence data of interest. In other words, provenance is about the “how” and “what” of transfer, and transformation of data.]

[bookmark: _Toc491114267]Architecture Nodes Models
Probably one of the most significant differences between Blockchain architectures and other architectures is the simple, but powerful node topography model that it is distributed versus being decentralized or centralized. Each model architectures are comprised of a community of nodes that collectively provide a solution to a problem.
[image:]
[bookmark: _Toc491114268]Centralized Model
In the Centralized Model (usually associated with mainframes) there is a very large centralized server node that all other nodes connect to. It provides services such as data storage, processing, backups, and computational power for the other nodes. It is possible to implement a ledger using the centralized model. In many ways, the centralized model that holds the ledger is easier to implement and maintain since there is only one version of the data in one place and consequently, by definition, the data is the canonical data. The multiple “copy of data” problem was first formally addressed by E. F. Codd in his development of A Relational Model of Data for Large Shared Data Banks [8]. The following chart shows that global database market is not shrinking and by in 2017 will be $50 billion. [9]

[image: s Oracle’s Position Secure in the Database Space?]

Centralized systems are the easiest to maintain because all the work can be done in one place at the same moment in time. However, with the advent of tools that aid in the Decentralized and Distributed systems, the maintenance issues can be mitigated. Centralized systems have poor fault tolerance. If any fault occurs, the systems becomes unavailable which can lead to stability issues and a resistance to evolutionary changes.
Centralized systems are limited in scalability to the size of the central node’s hardware that can be acquired. When the system needs to grow, generally, the system hardware needs to be replaced which increases the risk to stability.
As a rule, centralized systems are easy to build and develop since everything that is needed is in one place at one time. But as with maintenance, modern tools make Decentralized and Distributed systems easy to develop.
Centralized systems must evolve slowly and methodically because of their fault intolerance nature. When a change needs to occur, the whole system needs to be upgraded at the same time.
[bookmark: _Toc491114269]Decentralized Model
In the Decentralized model, there are several “central” nodes, each providing redundancy and failover capabilities. Often each of the centralized nodes are geographically distributed (i.e., North American, Europe, SE Asia, etc.).
Decentralized systems overcome some of the problems associated with a centralized system, they do not have a single point of failure, each node can be maintained independently which ultimately results in a more stable system. However, the scalability of the system is moderate since the cost of expansion per node is generally steep. Granted, much of this cost has come down with the availability of Platform as a Service (PaaS) offerings from Amazon, Microsoft, etc. However, since the nodes are arranged in clusters around one of the centralized servers, there is only partial fault tolerance and occasionally parts of the system will be unavailable. An example of this kind of fault intolerance was the Distributed Denial of Service (DDoS) attack on DNS servers on the US East coast and in Europe. [10] The Decentralized Model is used extensively in Cloud Computing for offering Infrastructure as a Service (IaaS), Software as a Service (SaaS) and Platform as a Service (PaaS). Although there are implementations of cloud computing which do not use the Decentralized model (i.e., blockchains), The following chart from Garner summarizes the projected growth of the “as a Service” offerings. [11]
[image:]

[bookmark: _Toc491114270]Distributed Model
In the Distributed Model, all the nodes are equal peers within the system and each acting as a redundant copy of the other nodes. This provides for an extremely high fault tolerance that is tied to the number of nodes. The more nodes, the more fault tolerant. Since each node is an equal peer, there is no single point of failure. In addition, the system becomes almost infinitely scalable.
However, all the nodes are not really considered “equal” in the truest sense. Some nodes are use simply to create simple transaction, others record all the information within the blockchain and others go on to mine the blockchain/
[image: ttps://cdn4.cryptocoinsnews.com/wp-content/uploads/2016/04/Chart-1.png]

[bookmark: _Toc491114271]Reference Architecture
[bookmark: _Toc491114272]Definition
The U.S. Department of Defense (DoD) Office of the Assistant Secretary of Defence Networks and Information Integration (OASDD/NII) has defined a Reference Architecture (RA) [12] as:
· Providing common language for the various stakeholders
· Providing consistency of implementation of technology to solve problems
· Supporting the validation of solutions against proven Reference Architectures
· Encouraging adherence to common standards, specifications, and patterns
[bookmark: _Toc491114273]Current Status
Currently, all the implementations of Blockchain are proprietary products each with its own proprietary architecture. Most of the products are Open Source Software (OSS) governed by OSS communities which means that architectures, though proprietary, are publicly and freely available. However, each of these efforts are being built as extant systems that attempt to provide an implementation of the architecture in its entirety as part of the product. With the competing OSS Blockchain efforts vying for dominance, most of the RA tenets are not being met and consequently, there is no RA architecture available for Blockchains.
[bookmark: _Toc491114274]Proposed DIDO Reference Architecture
A simplistic Distributed Immutable Data Object (DIDO) Reference Architecture (RA) for the blockchains is depicted below. There are basically two stacks, both built upon a secure messaging layer. The stacks are basically divided based on the data that is distributed and the rules associated with that data.
The Ledger Stack is represented in the diagram by the blue boxes to the left. They represent a traditional Blockchain-Bitcoin stack generally provided by most blockchain implementations such as Bitcoin, Ethereum and Distributed Ledger. Starting from the top and working down the stack, the first layer is the Blockchain Software itself. This software is distributed on every node within the blockchain and are responsible for all the functions associated with the care and maintenance of the Ledger. Generally, this software is accessed using tools which provide Transactions that are sent through the Secure Message Layer that manipulates the content of the Ledger. In some cases, access is accomplished using a Smart Contract, which then provides Transactions that are sent through the Secure Messaging Layer to manipulate the Ledger.
[image:]
[bookmark: _Toc491114304]Figure 1 The DIDO Reference Architecture (RA)
The Global Data Object Stack is represented in the diagram by the green boxes to the right. They represent the stack generally provided by Distribute Applications (Dapps) generally available through Ethereum and Distributed Ledger and are responsible for all the functions associated with the car and maintenance of the Global Data Objects.
stack Right green stack represents the current trend within the Blockchain communities to expand the capabilities using Distributed Applications. Starting from the top and working our way down the stack, the first layer is the Web Application which resides on the client’s machines and interacts with the Distributed Application which performs some sort of business logic that communicates through the Secure Messaging layer to using transforms to manipulate the Global Data Objects.
Although the two stacks are similar at an elementary level, they are very different in terms what is considered in scope. At the heart of each stack are data objects. In the left stack, this data object is a ledger which was modelled originally after an accounting ledger which had account balances. The balance it stores is simple and is only modifiable through transactions which allows the values to change only by transferring the money in-to or out-of other accounts. To maintain the integrity of the accounts in the ledger, there are strict rules developed over centuries that govern the kinds of transactions allowed.
At the heart of the right green side of the stack are Global Data Objects. This represents data that the Distributed Application (Dapps) use in their operations. The rules governing this data is generally looser than those of the ledger data and are controlled by the object that encapsulates the data which can vary in size from just a few bytes to potentially Gigabytes. Instead of flow of data being governed by the rigid transactions, they are governed by Operational Transforms (OT). These are small recorded and attributed transformations to the underlying Global Data Objects. This allows for any individual or group of transformations to be undone.
It is possible for there to be cross-stack interactions. For example, A Smart Contracts to access and use Global Data using Operational Transforms or for Dapps to use the Ledger using Transactions. However, it is important to note that their potential side effects that can cross the stacks and must be accounted for when changes are done or undone to the Ledger or the Global Data Objects. For example, when a Smart Contract modifies Global Data Objects and the Smart Contract aborts, not only does the Ledger Transactions need to be undone, but also the side effect changes made to the Global Data Objects.
[bookmark: _Toc491114275]Common Stack
The Common Stack are those components which are used by both the Ledger and Global Data Stacks as well as characteristics and attributes that apply to all components within the DIDO-Network. There are two Common Components: Tools and Interfaces, and Secure Messaging Layer. These Common Components can be used exclusively by one of the other stacks but it spans across the components of the individual Stack. For example, the Transaction Application Programming Interfaces (API) is used by both the Blockchain Software and the Smart Contracts and potentially by some of the tools. However, the Transaction API may or may not be used by the Global Data Stack.
[image:]
[bookmark: _Toc491114305]Figure 2The DIDO Secure Message Layer, Tools and Interfaces Components
One of the most critical components of the Common Stack components in the ability to securely and reliably send messages between the various components and ultimately to the Ledger and the Global Data Objects.
[bookmark: _Ref490045155][bookmark: _Ref490045206][bookmark: _Toc491114276]General Characteristics and Attributes
[bookmark: _Toc491114277]System of Systems
To go beyond a simple cash replacement process, Blockchains need to become a Systems-of-Systems (SoS) rather than a single product offering. The migration from a single unified product offering to an SoS means that there needs to be multiple implementations available for most of the systems (or components) that comprise the Blockchain. The multiple implementations will greatly reduce the risk of any part of the system being compromised by a single system, subsystem or component.
Each component needs to be deterministic in its behaviour. This means given the same set of inputs, the outputs will always be the same. Therefore, if there are multiple implementations of a component, each will provide the same results given the same inputs. The selection of a component is a business decision based on trust, mutual interests, and history is left to the individual participants in Blockchain. This means that for all components, there should be at least two different implementations with each implementation acting as independent validation and verification of the other. This is not so different from the current system where each node within the blockchain running the same code and getting the results. Differences in results would indicate a potentially compromised node.
For example, a successful blockchain could be worldwide usage (i.e., Bitcoin, Ethereum, etc.). With a SoS approach, each country that a transaction is executed in, can have its own implementations of various components with their own rules and regulations on reporting and logging. The Swiss might not want to have its transactions reported to the USA, Chinese, Russians or even EU members owing to their unique privacy laws. They would therefore select components that meet the needs of the Swiss rather than the world at large.
There are several standards which should help meet the needs of a Blockchain SoS:
· Systems Modelling Language™ (OMG SysML®) is a general-purpose graphical modelling language for specifying, analysing, designing, and verifying complex systems that may include hardware, software, information, personnel, procedures, and facilities. In particular, the language provides graphical representations with a semantic foundation for modelling system requirements, behaviour, structure, and parametrics, which is used to integrate with other engineering analysis models. It represents a subset of UML 2 with extensions needed to satisfy the requirements of the UML™ for Systems Engineering RFP as indicated in Figure 1. SysML leverages the OMG XML Metadata Interchange (XMI®) to exchange modelling data between tools, and is also intended to be compatible with the evolving ISO 10303-233 systems engineering data interchange standard. [13]
· ISO 10303-233:2012 specifies an application protocol for the representation of systems engineering data. It defines the context, scope and information requirements for various development stages during the design of a system. ISO 10303-233:2012 is applicable to any form of system, including aircraft, cars, ships, railways, and plant. [14]
· Unified Architecture Framework Profile (UAFP) includes the language extensions to enable the extraction of specified and custom models from an integrated architecture description (AD). The models describe a system from a set of stakeholders’ concerns such as security or information through a set of predefined viewpoints and associated views. Developed models can also reflect custom viewpoints or to develop more formal extensions for new viewpoints. [15]
[bookmark: _Toc491114278]Case Management
A major problem confronting the Blockchain community is the development of customer support when issues are encountered with the Blockchain Transactions or with the numerous Smart Contracts. This is what people come to expect when they use financial services and was part of the motivation behind the Dodd-Frank Wall Street Reform and Consumer Protection Act [16] especially Section 1034 Response to Consumer Complaints and Inquiries [17].
· Case Management Modelling Notation (CMMN) This specification defines a common meta-model and notation for modelling and graphically expressing a Case, as well as an interchange format for exchanging Case models among different tools. The specification is intended to capture the common elements that Case management products use, while also considering current research contributions on Case management. It is to Case management products what the OMG Business Process Model and Notation (BPMN) specification is to business process management products. This specification is intended to be consistent with and complementary to BPMN. [18]
[bookmark: _Ref490045799][bookmark: _Toc491114279]Software and Systems Assurance
The strategy behind System Assurance is part of Systems and software Quality Requirements and Evaluation (SQuaRE)[footnoteRef:6] and establishes a common framework for analysis and exchange of information related to system assurance[footnoteRef:7] and trustworthiness. There are different kinds of assurance that need to be addressed: Information Assurance (IA)[footnoteRef:8], Safety Assurance (SfA)[footnoteRef:9], Software Assurance (SwA)[footnoteRef:10], Mission Assurance(MA)[footnoteRef:11] and System Assurance (SysA)[footnoteRef:12]. This trustworthiness will assist in facilitating systems that better support Security, Safety, Software and Information Assurance. The Blockchain communities are trying to sell their solution based on being reliable, trustworthy and secure. There should probably be assurances for each of these as applied to Blockchains. [6: Systems and software Quality Requirements and Evaluation (SQuaRE) is an extension (ISO/IEC 25050 to ISO/IEC 25099) is designated to contain system or software product quality International Standards and/or Technical Reports that address specific application domains or that can be used to complement one or more SQuaRE International Standards. [23]] [7: Assurance is the measure of confidence that the security features, practices, procedures, and architecture of an information system accurately mediates and enforces the security policy. - CNSS 4009 IA Glossary [34]] [8: Information Assurance (IA) are measures that protect and defend information and information systems by ensuring their availability, integrity, authentication, confidentiality, and non-repudiation. These measures include providing for restoration of information systems by incorporating protection, detection, and reaction capabilities - CNSS 4009 IA Glossary [34]] [9: Safety Assurance (SfA) is providing confidence that acceptable risk for the safety of personnel, equipment, facilities, and the public during and from the performance of operations is being achieved. – FAA/NASA] [10: Software Assurance (SwA) is the justified confidence that the system functions as intended and is free of exploitable vulnerabilities, either intentionally or unintentionally designed or inserted as part of the system at any time during the life cycle. - CNSS 4009 IA Glossary [34]] [11: Mission Assurance (MA) is the ability of operators to achieve their mission, continue critical processes, and protect people and assets in the face of internal and external attack (both physical and cyber), unforeseen environmental or operational changes, and system malfunctions. – MITRE Systems Engineering Guide] [12: System Assurance (SysA) is the planned and systematic set of engineering activities necessary to assure that products conform with all applicable system requirements for safety, security, reliability, availability, maintainability, standards, procedures, and regulations, to provide the user with acceptable confidence that the system behaves as intended in the expected operational context. – OMG SysA Task Force]

· OMG-ISO/IEC 19506 Information technology -Object Management Group Architecture-Driven Modernization (ADM) -Knowledge Discovery Meta-Model (KDM): defines a meta-model for representing existing software assets, their associations, and operational environments, referred to as the Knowledge Discovery Meta-model (KDM). This is the first in the series of specifications related to Software Assurance (SwA) and Architecture-Driven Modernization (ADM) activities. KDM facilitates projects that involve existing software systems by insuring interoperability and exchange of data between tools provided by different vendors. [19]
· OMG Structured Assurance Case Metamodel: specification defines a metamodel for representing structured assurance cases. An Assurance Case is a set of auditable claims, arguments, and evidence created to support the claim that a defined system/service will satisfy the particular requirements. An Assurance Case is a document that facilitates information exchange between various system stakeholder such as suppliers and acquirers, and between the operator and regulator, where the knowledge related to the safety and security of the system is communicated in a clear and defendable way. Each assurance case should communicate the scope of the system, the operational context, the claims, the safety and/or security arguments, along with the corresponding evidence. [20]
· Intended for presenting Assurance Case and providing end-to-end traceability: requirement-to-artifact
· Goal Structured Notation (GSN) / Claims Arguments Evidence (CAE)
· OMG Semantics of Business Vocabularies and Rules (SBVR) - defines the vocabulary and rules (see Clauses 7 through 21) for documenting the semantics of business vocabularies and business rules for the exchange of business vocabularies and business rules among organizations and between software tools. It is interpretable in predicate logic with a small extension using modal operators. It supports linguistic analysis of text for business vocabularies and business rules, with the linguistic analysis itself being outside the scope of this specification. [21]
· OMG Structured Metrics Metamodel (SMM) - defines a meta-model for representing measurement information related to any model structured information with an initial focus on software, its operation, and its design. Referred to as the Structured Metrics Meta-model (SMM), this specification is an extensible meta-model for exchanging both measures and measurement information concerning artifacts contained or expressed by structured models, such as MOF[footnoteRef:13]. In addition, the SMM include elements representing the concepts needed to express a wide range of diversified measures. The specification does include a minimal library of software measures, but it is not asserting that the listed measures constitute standards themselves; these are supplied simply as non-normative examples. [22] [13: MetaObject Facility Specification (MOF) is the foundation of OMG's industry-standard environment where models can be exported from one application, imported into another, transported across a network, stored in a repository and then retrieved, rendered into different formats (including XMI™, OMG's XML-based standard format for model transmission and storage), transformed, and used to generate application code.]

· NIST Security Automation Protocol (SCAP) - SCAP is a suite of specifications for organizing, expressing, and measuring security-related information in standardized ways, as well as related reference data such as unique identifiers for vulnerabilities. SP 800-117 provides an overview of SCAP Version 1.0, focusing on how organizations can use SCAP-enabled tools to enhance their security posture. It also explains to IT product and service vendors how they can adopt SCAP Version 1.0 capabilities within their offerings. [23]
[bookmark: _Toc491114280]System and Software Quality
The ISO/IEC 25010 standard provides consistent terminology for “specifying, measuring and evaluating system and software product quality”. [24] Consortium for IT Software Quality (CISQ) [25] provides the following diagram highlighting eight ISO defined software quality characteristics and the associated sub-characteristics. [25]
[image:]
[bookmark: _Ref486409078][bookmark: _Toc491114306]Figure 3 ISO Defined Software Quality Characteristics
Management
Management is part of SQuaRE and defines all common models, terms and definitions referred further by all other standards from SQuaRE series. Currently, Quality Management consists of the following standards [24]:
· ISO/IEC 25000 - Guide to SQuaRE: Provides the SQuaRE architecture model, terminology, documents overview, intended users and associated parts of the series as well as reference models. [24]
· ISO/IEC 25001 - Planning and Management: Provides requirements and guidance for a supporting function which is responsible for the management of software product requirements specification and evaluation. [24]
Modelling
Modelling is part of SQuaRE and provides detailed quality models for computer systems and software products, quality in use, and data. Currently, Quality Modelling consists of the following standards: [24]
· ISO/IEC 25010 - System and software quality models: Describes the model, consisting of characteristics and sub-characteristics, for software product quality, and software quality in use. [24]
· ISO/IEC 25012 - Data Quality model: defines a general data quality model for data retained in a structured format within a computer system. It focuses on the quality of the data as part of a computer system and defines quality characteristics for target data used by humans and systems. [24]
Measurement
Measurement is part of SQuaRE and includes a software product quality measurement reference model, mathematical definitions of quality measures, and practical guidance for their application. Presented measures apply to software product quality and quality in use. Currently, Quality Measurement consists of the following standards: [24]
· ISO/IEC 25020 - Measurement reference model and guide: Presents introductory explanation and a reference model that is common to quality measure elements, measures of software product quality and quality in use. Also provides guidance to users for selecting or developing, and applying measures. [24]
· ISO/IEC 25021 - Quality measure elements: Defines a set of recommended base and derived measures, which are intended to be used during the whole software development life cycle. The document describes a set of measures that can be used as an input for the software product quality or software quality in use measurement. [24]
· ISO/IEC 25022 - Measurement of quality in use: Describes a set of measures and provides guidance for measuring quality in use. [24]
· ISO/IEC 25023 - Measurement of system and software product quality: Describes a set of measures and provides guidance for measuring system and software product quality. [24]
· ISO/IEC 25024 - Measurement of data quality: Defines quality measures for quantitatively measuring data quality in terms of characteristics defined in ISO/IEC 25012. [24]
Requirements
Requirements is part of SQuaRE helps specifying quality requirements. These quality requirements can be used in the process of quality requirements elicitation for a software product to be developed or as input for an evaluation process. Quality Requirements consists of the following standard: [24]
· ISO/IEC 25030 - Quality requirements: Provides requirements and guidance for the process used to develop quality requirements, as well as requirements and recommendations for quality requirements. [24]
Evaluation
Evaluation is part of SQuaRE and provides requirements, recommendations and guidelines for software product evaluation. Quality Evaluation consists of the following standards: [24]
· ISO/IEC 25040 - Evaluation reference model and guide: Contains general requirements for specification and evaluation of software quality. Provides a framework for evaluating quality of software product and states the requirements for methods of software product measurement and evaluation. [24]
· ISO/IEC 25041 - Evaluation guide for developers, acquirers and independent evaluators: Provides requirements, recommendations and guidelines for developers, acquirers and independent evaluators of the system and software product. [24]
· ISO/IEC 25042 - Evaluation modules: Defines the structure and content of the documentation to be used to describe an evaluation module. These evaluation modules contain the specification of the quality model (i.e. characteristics, sub-characteristics and corresponding product or quality in use measures), the associated data and information about its application. [24]
· ISO/IEC 25045 - Evaluation module for recoverability: Provides the specification to evaluate the sub-characteristic of recoverability defined under the characteristic of reliability of the quality model. [24]
[bookmark: _Toc491114281]Standard Measures of System and Software
· All software should comply with ISO/IEC2510. [24] Systems and software engineering -- Systems and software Quality Requirements and Evaluation (SQuaRE) -- System and software quality models. The ISO/IEC 25010 series contains a framework to evaluate software product quality. ISO/IEC 25010 defines a set of eight software quality characteristics, or system “-ilities,” i.e. security, reliability, and maintainability, etc. ISO/IEC 25023 describes how to apply the quality characteristics to measure product quality. However, the measures defined in 25023 largely measure quality at the behavioural level rather than at the level of specific quality problems in the source code. [26] To supplement the level of measurement in 25023, the Consortium for IT Software Quality (CISQ) [25]defines source code level measures of four of the quality characteristics—Reliability[footnoteRef:14], Performance Efficiency[footnoteRef:15], Security[footnoteRef:16], and Maintainability[footnoteRef:17]. [14: Reliability measures the risk of potential application failures and the stability of an application when confronted with unexpected conditions. According to ISO/IEC/IEEE 24765, Reliability is the degree to which a system, product, or component performs specified functions under specified conditions for a specified period of time. The reason for checking and monitoring Reliability is to prevent or at least reduce application downtime, outages, data corruption, and errors that directly affect users. [77]] [15: Performance Efficiency assesses characteristics that affect an application’s response behavior and use of resources under stated conditions (ISO/IEC 25010). Performance Efficiency affects customer satisfaction, workforce productivity, application scalability, response-time degradation, and inefficient use of processing or storage resources. The Performance Efficiency of an application lies in each individual component‘s performance, as well as in the effect of each component on the behavior of the chain of components comprising a transaction in which it participates. [78]] [16: Security assesses the degree to which an application protects information and data so that persons or other products or systems have the degree of data access appropriate to their types and levels of authorization (ISO 25010). Security measures the risk of potential security breaches due to poor coding and architectural practices. Security problems have been studied extensively by the Software Assurance community and have been codified in the Common Weakness Enumeration (CWE) at cwe.mitre.org. [79]] [17: Maintainability represents the degree of effectiveness and efficiency with which a product or system can be modified by the intended maintainers (ISO 25010). Maintainability incorporates such concepts as changeability, modularity, understandability, testability, and reusability. Maintainability is responding rapidly to market conditions and keeping IT costs under control. The Maintainability of an application is a combination of compliance with good coding practices, the homogeneity with which coding rules are applied across an application, and compliance with architectural rules. [80]]

Automated software quality measurement is necessary because manual review is infeasible for large multi-layer, multi-language, multi-platform systems. These standard measures are useful for assessing quality assurance, benchmarking, system risk analysis, contract Service Level Agreements (SLAs) and software acceptance criteria. When it comes to the critical nature of Smart Contracts in maintaining trust of a system, these standard measures are even more critical. For example, would you want to trust your 401K savings to a system that has never had these systems measures applied to it?
[bookmark: _Toc491114282]Automated Characteristic Measurements
The four characteristics highlighted in blue in Figure 1 ISO Defined Software Quality Characteristics (i.e., Reliability, Performance Efficacy, Security, and Maintainability) are considered suitable for automatic measurement by CISQ.
The sub-characteristics are used to determine the scope coverage for each measure. The CISQ measures are defined as the sum of critical weaknesses in software that cause the undesirable behaviours underlying trust and many of the measures (i.e., as downtime, performance degradation, and amount of data stolen.) defined in ISO 25023. CISQ detects and measures weaknesses by analysing source code. Collectively, the CISQ measures cover eighty-six critical code quality rules at the code unit and system level.
[bookmark: _Toc491114283]Automated Tools
CAST
Synopsys (Coverity) is also “conformant.” We’re thinking of partnering with the NIST SAMATE project to get a better grasp on other static analysis tools.
	CISQ™ Specifications:
	Acronym
	OMG Document #

	 Automated Enhancement Points
	AEP
	formal/2017-04-03

	 Automated Function Points
	AFP
	formal/2014-01-03

	 Automated Source Code Maintainability Measure
	ASCMM™
	formal/2016-01-01

	 Automated Source Code Performance Efficiency
 Measure
	ASCPEM™
	formal/2016-01-02

	 Automated Source Code Reliability Measure
	ASCRM™
	formal/2016-01-03

	 Automated Source Code Security Measure
	ASCSM™
	formal/2016-01-04

[bookmark: _Toc491114284]Standards for Automated Quality Characteristic Measures
The Automated Quality Characteristic Measures became OMG® approved standards in 2015. The standards are:
[bookmark: _Toc491114307]Figure 4 Automated Quaility Characteristic Measures Sprcifications
Manual Characteristic Measurement
The four characteristics highlighted in grey in Figure 1 ISO Defined Software Quality Characteristics (i.e., Functional Suitability, Operability, Compatibility, and Portability) do not lend themselves to simple automation. However, some of the sub-categories of each of these categories can be addressed using other means. For example, emphasizing Portability sub-categories of Installability, Replaceability and Adaptability during the Smart Contract language selection process can avoid these problem areas altogether. In a similar fashion the category Compatibility sub-categories of Co-existence and Interoperability can be addressed during the acquisition process also.
A major problem that arises during the acquisition selection process is how to assess products objectively versus subjectively. For example, often software engineers help provide the evaluation of products. The engineers can have biases based on previous experiences or a desire to use the “latest” technology often falling into the Gartner branded “hype cycle” for adoption of technology. See Amara’s Law. One way to avoid this is to use the “Monster test” as one of the evaluation criteria used for a new technology. Type in the technology name in Google and get the total number of hits, then type in the name of the technology in the job referral site Monster.com. For example, using the term ‘“Smart Contracts” Hyperledger’ in Google gets about 70,000 hits and in Monster.com it gets 13. This appears to indicate that even though there is less information on the web about Solidity, there seems to be more jobs. This could be due to many factors such as the text used to describe the jobs listed.
	
	Google
	Monster

	“Smart Contracts” Hyperledger
	70300
	13

	“Smart Contracts” Solidity
	52300
	15

[bookmark: _Toc491114308]Figure 5 Hype and Smart Contracts
Systems and Software Architecture
In software engineering, scientific and empirical studies converge to the same result: System-level coding and architectural problems, as opposed to code quality within a single component, lead to 90% of production issues, and significantly impact structural quality.
Correlations between programming mistakes and production defects unveil something really intriguing and, to some extent, counter‐intuitive. [27] [28] It appears that basic Unit Level errors account for 92% of the total errors in the source code. [29] [30] [31] These numerous code level issues eventually count for only 10% of the defects in production. On the other hand, bad software engineering practices at the Technology and System Levels account for only 8% of total defects, but consume over half the effort spent on fixing problems, and eventually lead to 90% of the serious reliability, security, and efficiency issues in production. [32] [33] This means that tracking and fixing bad programming practices at the Unit Level alone may not translate into the anticipated business impact, since many of the most devastating defects can only be detected at the Technology and System Levels. Tracking these Technology and System Level programming errors could save more than half of the rework during the building phases, while drastically decreasing the production incident rate.
[image: % System level flaws represents 90% on cost and risk imp]
[bookmark: _Toc491114309]Figure 6 Impact of poor Systems and Software Level Architecture and Design
[bookmark: _Toc491114285]Secure Messaging Layer
Probably the cornerstone for Blockchains is the requirement that there is to have a secure messaging layer that the nodes within the Blockchain can trust to marshall between nodes without corruption or tampering. This requires a solid transport mechanism, an excellent security infrastructure and a way to distribute data quickly and efficiently.
[bookmark: _Toc491114286]Transport
Transport actually moves the data as bits between any two nodes on the network, It is covered by the following specifications.
· The Transmission Control Protocol (TCP) is intended for use as a highly reliable host-to-host protocol between hosts in packet-switched computer communication networks, and in interconnected systems of such networks. [34]
· The Internet Protocol (IP) is designed for use in interconnected systems of packet-switched computer communication networks. Such a system has been called a "catenet". The internet protocol provides for transmitting blocks of data called datagrams from sources to destinations, where sources and destinations are hosts identified by fixed length addresses. The internet protocol also provides for fragmentation and reassembly of long datagrams, if necessary, for transmission through "small packet" networks. [35] [36]
· User Datagram Protocol (UDP) provides a procedure for application programs to send messages to other programs with a minimum of protocol mechanism. The protocol is transaction oriented, and delivery and duplicate protection are not guaranteed. Applications requiring ordered reliable delivery of streams of data should use the Transmission Control Protocol (TCP). [37]
· IP multicasting is the transmission of an IP datagram to a "host group", a set of zero or more hosts identified by a single IP destination address. A multicast datagram is delivered to all members of its destination host group with the same "best-efforts" reliability as regular unicast IP datagrams, i.e., the datagram is not guaranteed to arrive intact at all members of the destination group or in the same order relative to other datagrams. [38]
[bookmark: _Toc491114287]Security
Security is not something that can be added to messages but needs to be considered from the very beginning of the architecture and design process.
· HMAC: Keyed-Hashing for Message Authentication. HMAC, a mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function. [39]
· Digital Signature Standard (DSS) - defines methods for digital signature generation that can be used for the protection of binary data (commonly called a message), and for the verification and validation of those digital signatures. Three techniques are approved. [40]
1. The Digital Signature Algorithm (DSA) is specified in this Standard. The specification includes criteria for the generation of domain parameters, for the generation of public and private key pairs, and for the generation and verification of digital signatures. [40]
2. The RSA digital signature algorithm is specified in American National Standard (ANS) X9.31 and Public Key Cryptography Standard (PKCS) #1. FIPS 186-4 approves the use of implementations of either or both of these standards and specifies additional requirements. [40]
3. The Elliptic Curve Digital Signature Algorithm (ECDSA) is specified in ANS X9.62. FIPS 186-4 approves the use of ECDSA and specifies additional requirements. Recommended elliptic curves for Federal Government use are provided herein. [40]
This Standard includes requirements for obtaining the assurances necessary for valid digital signatures. Methods for obtaining these assurances are provided in NIST Special Publication (SP) 800-89, Recommendation for Obtaining Assurances for Digital Signature Applications [40]
· PKCS #7: Cryptographic Message Syntax Version 1.5. describes a general syntax for data that may have cryptography applied to it, such as digital signatures and digital envelopes. The syntax admits recursion, so that, for example, one envelope can be nested inside another, or one party can sign some previously enveloped digital data. It also allows arbitrary attributes, such as signing time, to be authenticated along with the content of a message, and provides for other attributes such as countersignatures to be associated with a signature. A degenerate case of the syntax provides a means for disseminating certificates and certificate-revocation lists. [41]
· Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1. provides recommendations for the implementation of public-key cryptography based on the RSA algorithm, covering the following aspects [42]:
· Cryptographic primitives
· Encryption schemes
· Signature schemes with appendix
· ASN.1 syntax for representing keys and for identifying the schemes
· Security Assertion Markup Language (SAML), developed by the Security Services Technical Committee of OASIS, is an XML-based framework for communicating user authentication, entitlement, and attribute information. As its name suggests, SAML allows business entities to make assertions regarding the identity, attributes, and entitlements of a subject (an entity that is often a human user) to other entities, such as a partner company or another enterprise application. [43]
· XACML is an OASIS standard that describes both a policy language and an access control decision request/response language (both written in XML). The policy language is used to describe general access control requirements, and has standard extension points for defining new functions, data types, combining logic, etc. The request/response language lets you form a query to ask whether a given action should be allowed, and interpret the result. The response always includes an answer about whether the request should be allowed using one of four values: Permit, Deny, Indeterminate (an error occurred or some required value was missing, so a decision cannot be made) or Not Applicable (the request can't be answered by this service). [44] [45]
· OAuth authorization framework enables a third-party application to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction between the resource owner and the HTTP service, or by allowing the third-party application to obtain access on its own behalf. [46]
· OAuth Authorization Framework: Bearer Token Usage describes how to use bearer tokens in HTTP requests to access OAuth 2.0 protected resources. Any party in possession of a bearer token (a "bearer") can use it to get access to the associated resources (without demonstrating possession of a cryptographic key). To prevent misuse, bearer tokens need to be protected from disclosure in storage and in transport. [47]
[bookmark: _Ref491101542][bookmark: _Toc491114288]Messaging
A standardized way to send robustly securely messages in a non-centralized way is essential to blockchains. Standardization must cover many facets from the way in messages are sent using Application Programming Interfaces (APIs), the structure of the messages sent and the format of the messages on the wire. In addition, the security and integrity of those messages must be built into the messaging system and not “bolted on”. The Data Distribution System (DDS) family of standards supports all these facets allowing interoperability of the software that sends and receives messages as well as the messages themselves.
· DDS: Data-Distribution Service for Real-Time Systems version. Real-time applications model some of their communication patterns as a pure data-centric exchange, where applications publish (supply or stream) “data” which is then available to the remote applications that are interested in it. [48]
· DDS-RTPS: Data-Distribution Service Interoperability Wire Protocol. This specification defines an interoperability wire protocol for DDS. Its purpose and scope is to ensure that applications based on different vendors’ implementations of DDS can interoperate. [49]
· DDS-XTYPES: Extensible and Dynamic Topic-Types for DDS. The specification addresses four related concerns: the type system, the representation of types, the representation of data, and the language bindings used to access types and data. Each of these concerns is modelled as a collection of classes belonging to a corresponding package. [50]
· DDS Security - defines the Security Model and Service Plugin Interface (SPI) architecture for compliant DDS implementations. The DDS Security Model is enforced by the invocation of these SPIs by the DDS implementation. This specification also defines a set of built-in implementations of these SPIs. [51]
· The specified built-in SPI implementations enable out-of-the box security and interoperability between compliant DDS applications. [51]
· The use of SPIs allows DDS users to customize the behaviour and technologies that the DDS implementations use for Information Assurance, specifically customization of Authentication, Access Control, Encryption, Message Authentication, Digital Signing, Logging and Data Tagging. [51]
[bookmark: _Toc491114289]Tools and Interfaces
One of the most difficult components to provide to a distributed system are tools and interfaces. Unless the tools were written originally to support a distributed environment, it is hard to modify them. One of the most critical tools that is required for Blockchains is the need to support common logging of evens, information and errors as well as support a multitude of programming environments (i.e., Java, C/C++, C#, JavaScript, Windows, Unix, Linux, etc.). Another area of concern is the definition of the interfaces that between various components. Again, the problem is similar to logging requiring to cross platform and cross programming language requirements. Not everything can be written in Java, Python or even PHP.
· SYSLOG: describes the standard format for syslog messages and outlines the concept of transport mappings. It also describes structured data elements, which can be used to transmit easily parseable, structured information, and allows for vendor extensions. This document does not describe any storage format for syslog messages. It is beyond of the scope of the syslog protocol and is unnecessary for system interoperability. [52]
· OMG-IDL: Interface Definition Language (IDL). IDL is a purely descriptive language. This means that invoking operations, implementing them or creating and accessing data cannot be written in IDL, but in a programming language, for which mappings from IDL constructs have been defined. The mapping of an IDL construct to a programming language construct will depend on the facilities available in the programming language. For example, an IDL exception might be mapped to a structure in a language that has no notion of exception, or to an exception in a language that does. The binding of IDL constructs to several programming languages is described in separate specifications. [53]

[bookmark: _Toc491114290]The Ledger Stack
The Ledger[footnoteRef:18] stack is focused on the care and maintenance of the global, distributed ledger and the transactions used to make updates to the ledger entries. Ledger entries are immutable, in other words, once an entry has been added to the ledge it can never be modified. New versions of the entry can exist and the transactions captures the changes required to move between data entry values. For example, if the original value was AAAA and a transaction wants to modify the value to BBBB, the original value remains in the ledger and new entry is made with the value BBBB. The new entry points back to the previous value. Thus, by following the chain of modifications backwards, the Provenance [footnoteRef:19] and ultimately the pedigree[footnoteRef:20] of the value can be determined. [18: Ledger – is a collection of an entire group of similar accounts in double-entry bookkeeping. Also, called book of final entry, a ledger records classified and summarized financial information from journals (the 'books of first entry') as debits and credits, and shows their current balances. In manual accounting systems, a ledger is usually a loose-leaf binder with a separate page for each ledger account. In computerized systems, it consists of interlinked digital files, but follows the same accounting principles as the manual system. [54]] [19: Provenance – is meta-data about a record of the transformation of data such as inputs, entities, systems, and processes that influence data of interest. In other words, provenance is about the “how” and “what” of transfer, and transformation of data.] [20: Pedigree – is meta-data about a record of the ancestry of data and may include metric estimates about the reliability and confidence in the data. In other words, pedigree is about the “who” and “when” of ownership, transfer and transformation of data.]

In the diagram, the left blue components represent the Ledger Stack.
[image:]
[bookmark: _Toc491114310]Figure 7 The Ledger Stack Components
[bookmark: _Toc491114291]Blockchain Software
[GAP] Blockchains[footnoteRef:21] at the current time are predominately Open Source Software (OSS) implementations that rely on and use standards, but there are no standards that cover the blockchain as a component. All the OSS implantations are based on the original work of Satoshi Nakamoto [1] [2] and although the interfaces to the software are freely available and transparent, there are no standard interfaces that work across all the implementations. Additionally, there is no standard behaviour expected for the implementations other than those originally defined by Nakamoto. This requires knowledgeable architects, designers and software engineers for each of the specific implementation to develop tailored made “value added” services and tools for each implementation. [21: Blockchain – is a specific form of a distributed ledger where time sequenced transactions are stored in off-ledger blocks until they are rolled into the main distributed ledger. Often the blocks are added to the ledger when a “miner” solves a problem and receives a reward (i.e., electronic currency) when the proof-of-work (PoW) has been solved first. Blockchains is the technology behind Bitcoin and is specifically well suited for cryptocurrencies.]

Another problem confronting these implementations is for there to be feature creep[footnoteRef:22] and grow the requirements and functionality well beyond the original requirements of those needed to manage the distributed blockchains. For example, within the OSS implementations, it is extremely hard to replace one implementation of a Ledger with another implementation or the way identifiers are generated with a different one without having to branch the OSS and modify the software to meet these needs. [22: Feature creep (sometimes known as requirements creep or scope creep) is a tendency for product or project requirements to increase during development beyond those originally foreseen. Feature creep may be driven by a client's growing "wish list" or by developers themselves as they see opportunity for improving the product. [55]]

Another problem that occurs because of feature creep is that the current implementation is inappropriately extended to address problems that don’t quite fit the original architecture, design or software. For example, the Ethereum approach to expanding their implementation to handle Distributed Applications (Dapp) is to define them as Smart Contracts. This means that they just don’t modify Ledger data. This type of approach I referred to as the Maslow’s hammer problem: "if all you have is a hammer, everything looks like a nail". [54]
Note:	Although there are no standards directly covering blockchain software, the General Characteristics and Attributes in section 2.3.4.1 should still apply. For example, if a blockchain implementation declares that its product is “secure”, then the Software and Systems Assurance defined in section 2.3.4.1.3 should be followed. Not developing the assurance cases means that risks are undefined with potentially devastating results.

[bookmark: _Toc491114292]Smart Contracts
Smart Contracts are machine readable protocols (i.e., software) that facilitate, verify, or enforce the negotiation or performance of a transaction and keep it in compliance with contract terms and conditions. Often smart contracts incorporate the logic of traditional contractual clauses. Smart contracts can be as simple as a range checking constraint such as enforcing that an age of a person must be positive, the results of a calculation must be within 0 to 100 or they can be quite complex verifying and validating multiple transactions as steps. For example, Person A puts money in escrow, Person B puts property in escrow, Person A gets property, B get money.
Smart contracts must be deterministic which means that given the same inputs, they will always provide the same output.
A Smart Contract have the following characteristics:
· The transformation of a legal or a business agreement into data and software executable on the blockchain. In other words, the required acceptable assumptions, values, pre-conditions, post-conditions and the sequence of events needed to execute the contract.
· Accurately defining and capturing events triggering the evaluation of Smart Contract terms and conditions. Smart contracts can be applied at any point within a transaction. For example, before or after an object is created, before or after it is updated or even before or after it is marked for deletion.
· Using cryptographic digital signatures to verify transaction participants.

Although Smart Contracts are powerful and seductive, they are not above the law. Several laws that affect the financial and business world must directly addressed. The laws were created to mitigate some of the risk for investors and consumers:
Sarbanes-Oxley	The Sarbanes-Oxley Act of 2002 (SOX) is an act passed by U.S. Congress in 2002 to protect investors from the possibility of fraudulent accounting activities by corporations. The SOX Act mandated strict reforms to improve financial disclosures from corporations and prevent accounting fraud. The SOX Act was created in response to accounting malpractice in the early 2000s, when public scandals such as Enron Corporation, Tyco International plc, and WorldCom shook investor confidence in financial statements and demanded an overhaul of regulatory standards. [55] Major provisions are:
· Senior management certifies financial statements
· Management and auditors establish internal controls and reports on adequacy of controls
· Outlines requirements on Information Technology (IT) regarding electronic records.
Dodd Frank	The Wall Street Reform and Consumer Protection Act is a massive piece of financial reform legislation passed by the Obama administration in 2010 as a response to the financial crisis of 2008. Named after sponsors U.S. Senator Christopher J. Dodd and U.S. Representative Barney Frank, the act's numerous provisions, spelled out over roughly 2,300 pages, are being implemented over a period of several years and are intended to decrease various risks in the U.S. financial system. The act established several new government agencies tasked with overseeing various components of the act and by extension various aspects of the banking system. [56]
· Volcker Rule (Title VI of the Act), restricts ways banks can invest, limiting speculative trading and eliminating proprietary trading. Effectively separating investment and commercial functions of a bank, the Volcker Rule strongly curtails an institution’s ability to employ risk-on trading techniques and strategies when also servicing clients as a depository. [56]
· It contains provisions for regulating derivatives such as the credit default swaps that were widely blamed for contributing to the 2008 financial crisis. Because these exotic financial derivatives were traded over the counter, as opposed to centralized exchanges as stocks and commodities are, many were unaware of the size of their market and the risk they posed to the greater economy. [56]
· It set up centralized exchanges for swaps trading to reduce possibility of counterparty default and also required greater disclosure of swaps trading information to the public to increase transparency in those markets. The Volcker Rule also regulates financial firms' use of derivatives attempts to prevent "too-big-to-fail" institutions from taking large risks that might wreak havoc on the broader economy. [56]
 	NOTE: See FIBO below. It was created to help standardize and unify the financial language between various organizations.
 	NOTE: See BPMN below. It also requires contracts to be written in plain English and software is not consider plain English. [16]
HIPPA	The Health Insurance Portability and Accountability Act - ensures that individual health care plans are accessible, portable, and renewable, and it sets the standards and the methods for how medical data is shared across the U.S. health system to prevent fraud. It pre-empts state law unless the state's regulations are more stringent. [57]
 	This act has been modified to include processes for safely storing and sharing patient medical information electronically. The act also has an administrative simplification provision, which is aimed at increasing efficiency and reducing administrative costs by establishing national standards. [57]
 	Health insurers, health maintenance organizations (HMOs), healthcare billing services and other entities that handle sensitive personal medical information must comply with the standards set by the HIPAA. Noncompliance may result in civil or criminal penalties. [57]
Even before any standardization of Smart Contracts takes place, it is advised that these standards be reviewed and incorporated carefully. Business conducted using Smart Contracts is not allowed to bypass these laws. In addition to these laws, there are numerous laws inside and outside the US that need to be followed, especially when it comes to Data Residency. [58]
· BPMN - provide a notation that is readily understandable by all business users, from the business analysts that create the initial drafts of the processes, to the technical developers responsible for implementing the technology that will perform those processes, and finally, to the business people who will manage and monitor those processes. Thus, BPMN creates a standardized bridge for the gap between the business process design and process implementation. [59]
Another goal, but no less important, is to ensure that XML languages designed for the execution of business processes, such as WSBPEL (Web Services Business Process Execution Language), can be visualized with a business-oriented notation. [59]
This International Standard represents the amalgamation of best practices within the business modelling community to define the notation and semantics of Collaboration diagrams, Process diagrams, and Choreography diagrams. The intent of BPMN is to standardize a business process model and notation in the face of many different modelling notations and viewpoints. In doing so, BPMN will provide a simple means of communicating process information to other business users, process implementers, customers, and suppliers. [59]
· FIBO - Business Ontology (FIBO) - A joint effort by OMG and Enterprise Data Management (EDM) Council, FIBO is an industry initiative to define financial industry terms, definitions and synonyms using semantic web principles such as RDF/OWL and widely adopted OMG modelling standards such as UML. FIBO®* will contribute to transparency in the global financial system, aid industry firms in providing a cost-effective means for integrating disparate technical systems and message formats, and aid in regulatory reporting by providing clear and unambiguous meaning of data from authoritative sources. [60]
· FIBO Foundations - defines general concepts that are not unique to the financial industry, but needed to help define the financial concepts. FIBO Foundations therefore includes several basic legal, contractual and organizational concepts, among others. Concepts which are available in other industry standards are not included, but in some cases a “Proxy” concept is included for reference, for example for address and country concepts. The rationale for including these is two-fold: [61]
· Concepts in the financial industry are generally specializations of more general, non-financial concepts such as contracts, commitments, transactions, organizations and so on. These are included in FIBO Foundations so that specializations of them may be defined in other FIBO specifications; [61]
· Properties of financial industry concepts frequently need to be framed in terms of relationships to non-financial concepts such as countries, jurisdictions, addresses and the like. These are included in FIBO Foundations so that properties in other FIBO specifications may refer to them. [61]
· FIBO Business Entities - defines all terms relating to and descriptive and/or definitive of a range of business entities and legal entities that are considered by financial industry firms, regulators and other industry participants to be of relevance in the financial services domain. The scope of the concepts in this specification is those common to [62]
· Legal entities, [62]
· Formal organizations, [62]
· Terms definitive of or descriptive of companies incorporated by the issuance of shares and other forms of incorporated entity, [62]
· Terms which define the existence of other kinds of legal entity, [62]
· Terms specific to trusts, [62]
· Terms defining the relationships for example of ownership and control between and among the kinds of organization listed above. [62]
· Entities defined not by their legal structure but according to their role or function, including but not limited to banks, non-profit entities, government bodies, non-government and quasi-non-government organizations, international. [62]
· FIBO Indices and Indicators - defines concepts related to quoted market indices, indicators, foreign exchange rates, and interest rates, all relevant to valuation of securities, to definition of economic and other rate based derivatives, and general analysis of economies around the world. [63]

[bookmark: _Toc491114293]Transactions
A transaction contains the cryptographically signed data required to describe the creation, transfer or destruction of a fungible[footnoteRef:23] value representing an asset stored within the ledger. The transaction captures the change in state of the contents of the ledger.Currently, each implementation of Blockchain defines its own unique concept of a transaction, therefore there is no standard. [23: fungible - (of goods contracted for without an individual specimen being specified) replaceable by another identical item; mutually interchangeable.
‘it is by no means the world’s only fungible commodity’ [70]]

· DSA/ECDSA - Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) - Deterministic Usage of the Digital Signature Algorithm (DSA) and defines a deterministic digital signature generation procedure. Such signatures are compatible with standard Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) digital signatures and can be processed with unmodified verifiers, which need not be aware of the procedure described therein. Deterministic signatures retain the cryptographic security features associated with digital signatures but can be more easily implemented in various environments, since they do not need access to a source of high-quality randomness. [64]
· ISO 8601:2004 - Data elements and interchange formats -- Information interchange -- Representation of dates and times. representation of dates in the Gregorian calendar, times in the 24-hour timekeeping system, time intervals and recurring time intervals or of the formats of these representations are included in information interchange. [65] It includes
· calendar dates expressed in terms of calendar year, calendar month and calendar day of the month; [65]
· ordinal dates expressed in terms of calendar year and calendar day of the year; [65]
· week dates expressed in terms of calendar year, calendar week number and calendar day of the week; [65]
· local time based upon the 24-hour timekeeping system; [65]
· Coordinated Universal Time of day; [65]
· local time and the difference from Coordinated Universal Time; [65]
· combination of date and time of day; [65]
· time intervals; [65]
· recurring time intervals. [65]
· Date and Time on the Internet: Timestamps - defines a date and time format for use in Internet protocols that is a profile of the ISO 8601 [65] standard for representation of dates and times using the Gregorian calendar. [66]
· Financial Instrument Global Identifier (FIGI) - originated out of the recognition that chaos theory has nothing on the complexity generated everyday by the millions-perhaps billions-of security transactions that cross trading floors, clearinghouses, and exchanges all over the world. Almost every aspect of securities management is based on closed systems that use proprietary identifiers that are privately owned and licensed. Closing each deal is as much an exercise in translation as it is in transaction processing, as traders, investors, and brokers wrestle with multiple proprietary formats to determine what a security is, who owns it, how much it is worth, and when the deal should be closed. It introduces a tremendous amount of friction into the trade lifecycle and creates opaqueness where clarity is sought. In addition, the use of proprietary identifiers adds significant cost and overhead when users wish to integrate data from disparate sources or migrate to a different market data system. [67]
The evolution of advanced symbologies[footnoteRef:24] has helped the securities industry grow, but the limitations and costs imposed by the closed systems have become more apparent as companies and institutions continue to integrate operations on a global scale. Proprietary symbology now stands as one of the most significant barriers to increased efficiency and innovation in an industry that sorely needs it. Moreover, the lack of common identifiers is a key roadblock to achieving the holy grail of straight-through processing (STP). [67] [24: FIGI symbology consists of the unique, persistent, unchanging alpha-numeric identifier, as well as the multiple individual pieces of associated descriptive metadata. [52]]

[bookmark: _Toc491114294]Ledger
The Ledger is based on the concepts of the General Ledger (GL)[footnoteRef:25] used in most accounting systems. The GL concept has been expanded to not only cover the accounts of corporations but can also be used for currencies as proposed by Satoshi Nakamoto [1] [2] and became the basis of Bitcoin and Ethereum. However, the direction has been to broaden the definition of the ledger to expand beyond accounts and finances. [25: general ledger is a company's set of numbered accounts for its accounting records. The ledger provides a complete record of financial transactions over the life of the company. The ledger holds account information that is needed to prepare financial statements and includes accounts for assets, liabilities, owners' equity, revenues and expenses. [68]]

· ADS - AICPA General Ledger Standard audit data standards (ADS) - contribute to the efficiency and effectiveness of the audit process through standardization of the format for fields and files commonly requested for audit and other related purposes. Similarly, other consumers of the standardized information (such as creditors) also would benefit if a company chose to share that data with them. Both large and small as well as public and private companies also stand to benefit from the application of the ADS. By standardizing the data requested by auditors on a regular basis, companies will be able to automate and replicate the information request process thereby reducing the amount of time and effort required to provide the requested data. Company staff and internal audit will also benefit from enhanced analytical capabilities by leveraging the standardized data for internal purposes. The standard also will make the data usable for external auditors to perform enhanced data analysis.
These standards represent leading practices that well-designed accounting and financial reporting systems can adhere to. This publication addresses the general ledger (GL). [68]
[bookmark: _Toc491114295]Global Data Stack
The Global Data Stack is focused on the care and maintenance of the global, distributed data and the operational transforms used to make updates to the data.
Ledger entries are immutable, in other words, once an entry has been added to the ledge it can never be modified. New versions of the entry can exist and the transactions captures the changes required to move between data entry values. For example, if the original value was AAAA and a transaction wants to modify the value to BBBB, the original value remains in the ledger and new entry is made with the value BBBB. The new entry points back to the previous value. Thus, by following the chain of modifications backwards, the Provenance and ultimately the pedigree of the value can be determined.
[image:]
[bookmark: _Toc491114311]Figure 8 The Global Data Objects Stack Components
[bookmark: _Ref491081085][bookmark: _Ref491081134][bookmark: _Ref491098887][bookmark: _Toc491114296]Web Applications
A web application (Web App) is software that traditionally resides on a server or cluster of servers but is executed on a client generally from within a browser. It is possible to have the software reside as distributed software executing on all nodes within the distributed systems much the way Smart Contracts are done within the Ledger Stack. In the distributed Web App, the client software communicates with a Distributed Application (Dapp) instead of server.
Web Apps have the advantage that since they run in a browser instead of as native applications running under the operating system. This makes the software portable and agnostic to the client’s environment, however, it does require a standards based browser. Also, this provides the end user with a more consistent user interface (UI) across various platforms without extensive variations in implementation making support and maintenance easier. Additionally, in a truly distributed Web App, the software is loaded once into the distributed environment and becomes available and executable on all the nodes.
The disadvantage to Web Apps is that they do not have direct access to the OS file system, memory or CPU and it requires connectivity to the internet which doesn’t always work in Disadvantaged Intermittent Links (DIL) environments.
The following is a list of standards used in Web Apps:
· ECMAScript – is an object-oriented programming language for performing computations and manipulating computational objects within a host environment. ECMAScript (implementations include JavaScript, JScript and ActionScript) as defined here is not intended to be computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or output of computed results. Instead, it is expected that the computational environment of an ECMAScript program will provide not only the objects and other facilities described in this specification but also certain environment-specific objects, whose description and behaviour are beyond the scope of this specification except to indicate that they may provide certain properties that can be accessed and certain functions that can be called from an ECMAScript program. [69] [70]
ECMAScript was originally designed to be used as a scripting language, but has become widely used as a general-purpose programming language. A scripting language is a programming language that is used to manipulate, customize, and automate the facilities of an existing system. In such systems, useful functionality is already available through a user interface, and the scripting language is a mechanism for exposing that functionality to program control. In this way, the existing system is said to provide a host environment of objects and facilities, which completes the capabilities of the scripting language. A scripting language is intended for use by both professional and non-professional programmers. [69]
ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web pages in browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript is now used to provide core scripting capabilities for a variety of host environments (i.e., Node.js). Therefore, the core language is specified in this document apart from any particular host environment. [69]
· CSS - Cascading Style Sheets (CSS) is a simple mechanism for adding style (e.g., fonts, colours, spacing) to Web documents. [71]
· HTML5 – Hyper-Text Markup Language version 5 - is limited to providing a semantic-level markup language and associated semantic-level scripting APIs for authoring accessible pages on the Web ranging from static documents to dynamic applications. [72]
· HTTP - Hypertext Transfer Protocol is an application-level protocol for distributed, collaborative, hypermedia information systems. It is a generic, stateless, protocol which can be used for many tasks beyond its use for hypertext, such as name servers and distributed object management systems, through extension of its request methods, error codes and headers [47]. A feature of HTTP is the typing and negotiation of data representation, allowing systems to be built independently of the data being transferred. [73]
· SSL – Secure Sockets Layer Protocol, is a security protocol that provides communications privacy over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [74]
· TLS – Transport Layer Security (TLS) Protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [75]
· XML - Extensible Markup Language (XML) Extensible Markup Language, abbreviated XML, describes a class of data objects called XML documents and partially describes the behaviour of computer programs which process them. XML is an application profile or restricted form of SGML, the Standard Generalized Markup Language [ISO 8879]. By construction, XML documents are conforming SGML documents.
XML documents are made up of storage units called entities, which contain either parsed or unparsed data. Parsed data is made up of characters, some of which form character data, and some of which form markup. Markup encodes a description of the document's storage layout and logical structure. XML provides a mechanism to impose constraints on the storage layout and logical structure. [76]
· XSD - XML Schema Definition Language (XSD) - define and describe a class of XML documents by using schema components to constrain and document the meaning, usage and relationships of their constituent parts: datatypes, elements and their content and attributes and their values. Schemas can also provide for the specification of additional document information, such as normalization and defaulting of attribute and element values. Schemas have facilities for self-documentation. Thus, XML Schema Definition Language: Structures can be used to define, describe and catalogue XML vocabularies for classes of XML documents. [77]
· Part 1: Structures define the nature of XSD schemas and their component parts, provide an inventory of XML markup constructs with which to represent schemas, and define the application of schemas to XML documents. [77]
· Part 2: Datatypes defines facilities for defining datatypes to be used in XML Schemas as well as other XML specifications. The datatype language, which is itself represented in XML, provides a superset of the capabilities found in XML document type definitions (DTDs) for specifying datatypes on elements and attributes. [78]
· XSLT - XSL Transformations (XSLT) This specification defines the syntax and semantics of the XSLT language. A transformation in the XSLT language is expressed as a well-formed XML document [XML] conforming to the Namespaces in XML Recommendation [XML Names], which may include both elements that are defined by XSLT and elements that are not defined by XSLT. XSLT-defined elements are distinguished by belonging to a specific XML namespace (see [2.1 XSLT Namespace]), which is referred to in this specification as the XSLT namespace. Thus this specification is a definition of the syntax and semantics of the XSLT namespace. [79]
· JSON - JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data. [80]
[bookmark: _Toc491114297]Distributed Applications
A Distributed Application (Dapp) is software that is executed or runs on multiple computers within a network simultaneously. The software is deterministic which means that given the same inputs, they all produce the same outputs. One of the main benefits of Dapps is they are extremely durable and hardened against a single point of failure. Therefore, to be distributed, deterministic and durable, any services that the Dapp must interact with must also be distributed, deterministic, and durable. This makes Dapps interaction with traditional Client/Server cloud services difficult. Naturally, cloud services applications such as Software as a Service (SaaS), Data as a Service (DaaS) have some redundancy and reliability built into them, however, they cannot achieve the same level of robustness of a Dapp. Therefore, SaaS and DaaS need to expose their functionality using a proxy Dapp which by nature has latency to the actual services and data of the cloud service which could adversely affect the Dapp’s deterministic and durability nature.
Another important aspect of a Dapp is that it should be runtime environment agnostic allowing as many nodes into the network as possible. This can be achieved using Virtual Machines such as a Java Virtual Machine (JVM) or interpretive engines such as those available with ECMAScript. There are some platform specific virtual machines available such as the Common Language Runtime (CLR) which are not standardized and do not run with the deterministic rigor on non-Windows platforms. Consequently, the list of languages allowable in Dapps is limited to those that have a standardized runtime environment (i.e., VM or Engine) that runs on multiple platforms.
· ECMAScript Engines – Relies on the standard ECMAScript [69] source code. The code is interpreted according to the specification. The basic job of a JavaScript engine, when all is said and done, is to take the JavaScript code that a developer writes and convert it to fast, optimized code that can be interpreted by a browser or even embedded into an application. JavaScriptCore, in fact, calls itself an “optimizing virtual machine”. [81]
More precisely, each JavaScript engine implements a version of ECMAScript, of which JavaScript is a dialect. As ECMAScript evolves, so do JavaScript engines. The reason there are so many different engines is each one is designed to work with a different web browser, headless browser, or runtime like Node.js. [81]
· Java - The Java® programming language is a general-purpose, concurrent, class-based, object-oriented language. It is designed to be simple enough that many programmers can achieve fluency in the language. The Java programming language is related to C and C++ but is organized rather differently, with a number of aspects of C and C++ omitted and a few ideas from other languages included. It is intended to be a production language, not a research language, and so, as C. A. R. Hoare suggested in his classic paper on language design, the design has avoided including new and untested features. [82]
The Java programming language is strongly and statically typed. This specification clearly distinguishes between the compile-time errors that can and must be detected at compile time, and those that occur at run time. Compile time normally consists of translating programs into a machine-independent byte code representation. Run-time activities include loading and linking of the classes needed to execute a program, optional machine code generation and dynamic optimization of the program, and actual program execution. [82]
The Java programming language is a relatively high-level language, in that details of the machine representation are not available through the language. It includes automatic storage management, typically using a garbage collector, to avoid the safety problems of explicit deallocation (as in C's free or C++'s delete). High-performance garbage-collected implementations can have bounded pauses to support systems programming and real-time applications. The language does not include any unsafe constructs, such as array accesses without index checking, since such unsafe constructs would cause a program to behave in an unspecified way. [82]
The Java programming language is normally compiled to the bytecoded instruction set and binary format defined in The Java Virtual Machine Specification, Java SE 7 Edition. [82]
· Java Virtual Machine (JVM) - The Java Virtual Machine is the cornerstone of the Java platform. It is the component of the technology responsible for its hardware- and operating system-independence, the small size of its compiled code, and its ability to protect users from malicious programs. [83]
The Java Virtual Machine is an abstract computing machine. Like a real computing machine, it has an instruction set and manipulates various memory areas at run time. It is reasonably common to implement a programming language using a virtual machine; the best-known virtual machine may be the P-Code machine of UCSD Pascal. [83]
The first prototype implementation of the Java Virtual Machine, done at Sun Microsystems, Inc., emulated the Java Virtual Machine instruction set in software hosted by a handheld device that resembled a contemporary Personal Digital Assistant (PDA). Oracle's current implementations emulate the Java Virtual Machine on mobile, desktop and server devices, but the Java Virtual Machine does not assume any implementation technology, host hardware, or host operating system. It is not inherently interpreted, but can just as well be implemented by compiling its instruction set to that of a silicon CPU. It may also be implemented in microcode or directly in silicon. [83]
The Java Virtual Machine knows nothing of the Java programming language, only of a binary format, the class file format. A class file contains Java Virtual Machine instructions (or bytecodes) and a symbol table, as well as other ancillary information. [83]
For the sake of security, the Java Virtual Machine imposes strong syntactic and structural constraints on the code in a class file. However, any language with functionality that can be expressed in terms of a valid class file can be hosted by the Java Virtual Machine. Attracted by a generally available, machine-independent platform, implementers of other languages can turn to the Java Virtual Machine as a delivery vehicle for their languages. [83]
[bookmark: _Toc491114298]Operational Transforms
Operational Transforms (OT) is a technology for supporting collaborative computing functions and applications. OT has a rich set of collaboration capabilities and has been used to support a wide range of applications.
The first OT system was proposed for supporting concurrency control in real-time collaborative editing (CE) of plain text documents in 1989 [84]. Several years later, some correctness issues in the first OT system were detected and several approaches were independently proposed to solve these issues [85]. In 1998, a Special Interest Group of Collaborative Editing (SIGCE) was set up to promote communication and collaboration among CE and OT researchers. This was followed by another decade of continuous efforts of extending and improving OT by a community of researchers. The capability and application scope of OT has been continuously expanding over the years. [86]
At the current time there are no standards that cover OT.
[bookmark: _Toc491114299]Global Data Objects
Within the context of the DIDO, one of the most important aspects of Global Data Objects are that they are distributed globally just as the data within the ledger is distributed globally. If the data is not distributed globally and readily available at all nodes, then the reliability and robustness are compromised providing little advantage to traditional client/server models used in Database Management Systems (DBMSs) or web services.
Global Data Objects are can be simple scalar values much like those in the Ledger, however, they can also be quite complex objects comprised of multiple structures and scalars. One way used to support complex data types is to allow the data to be stored as a string, however, this approach eliminates the benefits of strongly types systems and makes an easy target for the injection of malware into the system.
Two approaches that use standards are available. The first uses W3C XML Documents (not XML Strings) to store the global data, the other uses the DDS topics to capture the data.
[bookmark: _Toc491114300]Extensible Markup Language Approach
In this approach, the Global data is stored as an XML Document and XML tools are used to define its structure, search the contents and transform the contents of the data. The following standards should apply. NOTE: XML documents are not XML Strings and must be well formed and valid
· XML, XSD, & XSLT – Refer to 2.3.6.1.
· DOM – Document Object Model (DOM) is a platform- and language-neutral interface that will allow programs and scripts to dynamically access and update the content, structure and style of documents. The document can be further processed and the results of that processing can be incorporated back into the presented page. This is an overview of DOM-related materials here at W3C and around the web. [87]
· XPath - XPath is the result of an effort to provide a common syntax and semantics for functionality shared between XSL Transformations (XSLT) and XPointer. The primary purpose of XPath is to address parts of an XML document. In support of this primary purpose, it also provides basic facilities for manipulation of strings, numbers and Booleans. XPath uses a compact, non-XML syntax to facilitate use of XPath within URIs and XML attribute values. XPath operates on the abstract, logical structure of an XML document, rather than its surface syntax. XPath gets its name from its use of a path notation as in URLs for navigating through the hierarchical structure of an XML document. [88]
In addition to its use for addressing, XPath is also designed so that it has a natural subset that can be used for matching (testing whether a node matches a pattern); this use of XPath is described in XSLT. [88]
[bookmark: _Toc491114301]Data Distribution Service (DDS)
The Data Distribution Service allows for the definition of data structures, the storage of values and complete logs of all previous values of the data. The sored data can be considered a distributed database that support SQL-like queries as defined in Annex A of the DDS Specification. In addition, there is a built-in Quality of Service (QoS) parameter called DURABILITY that allows data to be stored long term on disks. (see 7.1.3.4 named "DURABILITY" in the DDS Specification). Queries can either access current or stored data depending on the value of the of QoS parameters at the time of the query. “VOLITILE” only retrieves new data published to the data object. DURABILITY retrieves all archived data that match the query.
· For a complete set of DDS Specifications, refer to: 2.3.4.3.3
[bookmark: _Toc491114302]Recommendations
The current state of the Distributed Immutable Data Objects (DIDO) Reference Architecture (RA) which includes blockchains and cryptocurrencies is currently heavily dependent silo Open Source Software (OSS) products. These implementations are not based on standards, have poor to no interoperability, ignore many of the security and assurance issues and have poor to no interoperability with other products. There is very little traceability back to the rules and regulations that require reporting, compliance and auditing. It is recommended that a RA be adopted as defined in the following diagram:
[image:]
[bookmark: _Toc491114312]Figure 9 The DIDO Reference Architecture Components
 The DIDO RA separates
· Ledger from Global Data
· Ledger Transactions from Operational Transforms
· Smart Contracts from Distributed Application
· Blockchain software from Web Applications
It is heavily dependent upon a uniform, secure, reliable, distributed, and standards base Secure Messaging Layer that is not proprietary to any particular OSS blockchain implementation. It also provides for common tools such as logging and case management and platform independent definitions for Application Programming Interfaces (APIs).
The two major Blockchain OSS implementations implement many of the components within the DIDO RA. Bitcoin predominately implements the Ledger Stack (left blue side). Ethereum implements both the Ledger Stack and the Global Data Stack, however, they stretch the Ledger Stack components to perform the capabilities defined in the Global Data Stack (right green side). Although this may be expedient in producing a product, it probably will result in problems in the future.
A review is provided which covers the existing standards that cover each of the components in the DIDO RA and identifies gaps where there does not appear to be any standards defined. In the following diagram, the components that have standards are coloured in purple while those that do not have standards are grey.
[image:]
[bookmark: _Toc491114313]Figure 10 The DIDO RA Components with Identified Stanndards
Bibliography

[1] 	S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 24 May 2009. [Online]. Available: https://bitcoin.org/bitcoin.pdf.
[2] 	S. Nakamoto, 31 Oct 2008. [Online]. Available: http://article.gmane.org/gmane.comp.encryption.general/12588/.
[3] 	T. V. Bjproy, "Blockchain fundings are trendy, but we’re still in the Wild West days," 14 May 2017. [Online]. Available: https://venturebeat.com/2017/05/14/blockchain-fundings-are-trendy-but-were-still-in-the-wild-west-days/. [Accessed 21 July 2017].
[4] 	coinmarketcap.com, "CryptoCurrency Market Capitalizations," 18 July 2017. [Online]. Available: https://coinmarketcap.com/all/views/all/. [Accessed 18 Kuly 2017].
[5] 	C. Russo, "Ethereum Co-Founder Says Crypto Coin Market Is a Time-Bomb," 18 July 2017. [Online]. Available: https://www.bloomberg.com/news/articles/2017-07-18/ethereum-co-founder-says-crypto-coin-market-is-ticking-time-bomb?cmpid=socialflow-twitter-business&utm_content=business&utm_campaign=socialflow-organic&utm_source=twitter&utm_medium=social. [Accessed 18 July 2017].
[6] 	CoinDash, "Letter to CoinDash Contributors," 18 July 2017. [Online]. Available: https://www.coindash.io/. [Accessed 18 July 2017].
[7] 	L. Coleman, "Ex-Ethereum Developer: How the DAO Hack Happened And What Comes Next," 30 July 2016. [Online]. Available: https://www.cryptocoinsnews.com/ex-ethereum-developer-dao-hack-happened-comes-next/. [Accessed 18 July 2017].
[8] 	E. F. Codd, "A relational model of data for lage shared data banks," Communications of the ACM, vol. 13, no. 6, pp. 377-387, June 1970.
[9] 	A. Shields, "Is Oracle's Position Secure in the Database Space?," 18 January 2016. [Online]. Available: http://marketrealist.com/2016/01/oracles-position-secure-database-space/. [Accessed 22 July 2017].
[10] 	B. J. A. J. V. Lovelace, "Friday's third cyberattack on Dyn 'has been resolved,' company says.," 21 October 2016. [Online]. Available: http://www.cnbc.com/2016/10/21/major-websites-across-east-coast-knocked-out-in-apparent-ddos-attack.html. [Accessed 22 July 2017].
[11] 	C. Coles, "Overview of Cloud Markey in 2017 and Beyond," 2016. [Online]. Available: https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/. [Accessed 24 July 2017].
[12] 	G. Doyle and B. Wilezynski, "Reference Architecture Description," U. S. DoD, Washington, DC, 2010.
[13] 	Object Management Group (OMG), "What is SysML," September 2015. [Online]. Available: http://www.omgsysml.org/what-is-sysml.htm. [Accessed 7 Agust 2017].
[14] 	International Organization for Standardization (ISO), November 2012. [Online]. Available: https://www.iso.org/standard/55257.html. [Accessed 7 August 2017].
[15] 	Object Management Group (OMG), August 2016. [Online]. Available: http://www.omg.org/spec/UAF/1.0/Beta1/. [Accessed 7 August 2017].
[16] 	Investopedia, "Dodd-Frank Wall Street Reform and Consumer Protection Act," [Online]. Available: http://www.investopedia.com/terms/d/dodd-frank-financial-regulatory-reform-bill.asp. [Accessed 7 August 2017].
[17] 	International Association of Risk and Compliance Professionals (IARCP), "Dodd Frank Act Text Section 1034," 2010. [Online]. Available: http://www.dodd-frank-act.us/Dodd_Frank_Act_Text_Section_1034.html. [Accessed 7 August 2017].
[18] 	Object Management Group (OMG), "CMMN," December 2016. [Online]. Available: http://www.omg.org/spec/CMMN/1.1/. [Accessed 7 August 2017].
[19] 	International Organization for Standadization (ISO), "Information technology -- Object Management Group Architecture-Driven Modernization (ADM) -- Knowledge Discovery Meta-Model (KDM)," April 2012. [Online]. Available: https://www.iso.org/standard/32625.html. [Accessed 7 August 2017].
[20] 	Object Management Group (OMG), "Structured Assurance Case Metamodel (SACM)," July 2017. [Online]. Available: http://www.omg.org/spec/SACM/2.0/Beta/. [Accessed 7 August 2017].
[21] 	Object Management Group (OMG), "Semantics of Business Vocabulary and Business Rules," May 2017. [Online]. Available: http://www.omg.org/spec/SBVR/1.4/. [Accessed 7 August 2017].
[22] 	Object Management Group (OMG), "Structured Metrics Meta-model (SMM)," April 2016. [Online]. Available: http://www.omg.org/spec/SMM/. [Accessed 7 August 2017].
[23] 	National Insttute os Standards and Technology (NIST), "Securoty Content Automation Protocol (SCAP)," 27 July 2010. [Online]. Available: https://scap.nist.gov/publications/index.html. [Accessed 7 August 2017].
[24] 	nternational Standards Organization (ISO), "The ISO/IEC 25000 series of standards," [Online]. Available: http://iso25000.com/index.php/en/iso-25000-standards?limit=4&start=4. [Accessed 4 August 2017].
[25] 	Constortium for IT SoftwareQuality (CISQ), "Constortium for IT SoftwareQuality (CISQ)," [Online]. Available: http://it-cisq.org/. [Accessed 17 August 2017].
[26] 	International Organization for Standardization (ISO), June 2016. [Online]. Available: https://www.iso.org/standard/35747.html. [Accessed 17 August 2017].
[27] 	B. S. J. S. A. Curtis, "CAST Report on Application Software Health 2011/2012 (C RASH)," CAST, New York, 2012.
[28] 	C. &. B. O. Jones, "Economics of Software Quality," Addison‐Wesley, Boston, 2012.
[29] 	e. a. Li, "Characteristics of multiple component defects and architectural hotspots: A large . system c ase study.," Empirical Software Engineering, 2011.
[30] 	M. e. a. Leszak, "A case study of root cause defect analysis. Proceedings of the 22nd Conference on Software Engineering," IEEE Computer Society, Los Alamitos, CA, 2000.
[31] 	J. M. W. Kristiansen, "Software Defect Analysis: An Empirical Study of Causes and Costs in the Information Technology Industry," Institutt for datateknikk og informasjonsvitenskap, 2010.
[32] 	D. Spinellis, "Code Quality," Addison-Welsley, Boston, 2006.
[33] 	M. Nygard, "Release It! Design and Deploy Production Ready Software," Pragmatic Bookshelf, Raleigh, NC.
[34] 	Internet Engineering Task Force (IETF), "Transmission Control Protocol," September 1981. [Online]. Available: https://tools.ietf.org/html/rfc793. [Accessed 8 August 2017].
[35] 	Internet Engineering Task Force (IETF), "Internet Protocol," September 1981. [Online]. Available: https://tools.ietf.org/html/rfc791. [Accessed 8 August 2017].
[36] 	Internet Engineering Task Force (IETF), "Internet Protocol, Version 6 (IPv6) Specification," December 1998. [Online]. Available: https://tools.ietf.org/html/rfc2460. [Accessed 8 August 2017].
[37] 	Internet Engineering Task Force (IETF), "User Datagram Protocol," 28 August 1980. [Online]. Available: https://tools.ietf.org/html/rfc768. [Accessed 8 AUgust 2017].
[38] 	Internet Engineering Task Force (IETF), "Host Extensions for IP Multicasting," August 1989. [Online]. Available: https://tools.ietf.org/html/rfc1112. [Accessed 8 August 2017].
[39] 	M. B. a. R. H. Krawczyk, "HMAC: Keyed-Hashing for Message Authentication," February 1997. [Online]. Available: https://tools.ietf.org/html/rfc2104. [Accessed 6 August 2017].
[40] 	National Institute of Standards and Technology (NIST), "Digital Signature Standard (DSS)," July 2013. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf. [Accessed 10 August 2017].
[41] 	B. Kaliski, "PKCS #7: Cryptographic Message Syntax," March 1998. [Online]. Available: https://tools.ietf.org/html/rfc2315. [Accessed 2017 August 2017].
[42] 	B. K. J. Jonsson, "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications," RSA Laboratories, February 2003. [Online]. Available: https://www.ietf.org/rfc/rfc3447.txt. [Accessed 6 August 2017].
[43] 	Security Services Technical Committee of OASIS, "OASIS Securoty Services (SAML) TC," 1 May 2012. [Online]. Available: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security. [Accessed 8 August 2017].
[44] 	Oasis-Open.org, "A Brief Introduction to XACML," 14 March 2003. [Online]. Available: https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html. [Accessed 8 August 2017].
[45] 	OASIS, "OASIS eXtensible Access Control Markup Language (XACML) TC," 22 January 2-13. [Online]. Available: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf. [Accessed 8 August 2017].
[46] 	Internet Engineering Task Force (IETF), "The OAuth 2.0 Authorization Framework," October 2012. [Online]. Available: https://tools.ietf.org/html/rfc6749. [Accessed 8 August 2017].
[47] 	Internet Engineering Task Force (IETF), "The OAuth 2.0 Authorization Framework: Bearer Token Usage," October 2012. [Online]. Available: https://tools.ietf.org/html/rfc6750. [Accessed 8 August 2017].
[48] 	April 2015. [Online]. Available: http://www.omg.org/spec/DDS/1.4. [Accessed 4 August 2017].
[49] 	Object Management Group (OMG), "The Real-time Publish-Subscribe Protocol (RTPS) DDS Interoperability Wire Protocol Specification," 2014 September. [Online]. Available: http://www.omg.org/spec/DDSI-RTPS/2.2/PDF/. [Accessed August 2017].
[50] 	Object Management Group (OMG), "Extensible and Dynamic Topic Types for DDS," November 2014. [Online]. Available: http://www.omg.org/spec/DDS-XTypes/1.1/. [Accessed 6 August 2017].
[51] 	Object Management Group (OMG), "DDS Security," December 2016. [Online]. Available: http://www.omg.org/spec/DDS-SECURITY/. [Accessed 8 August 2017].
[52] 	Internet Engineering Task Force (IETF), "The Syslog Protocol," March 2009. [Online]. Available: https://tools.ietf.org/html/rfc793. [Accessed 8 August 2017].
[53] 	Object Management Group (OMG), "Interface Definition Language," July 2017. [Online]. Available: http://www.omg.org/spec/IDL/. [Accessed 6 August 2017].
[54] 	A. H. Maslow, Psuchology of Science: A Reconnaissane, Gateway Editions, 1969.
[55] 	Investopedia, "Sarbanes-Oxly Act of 2002 - SOX," [Online]. Available: http://www.investopedia.com/terms/s/sarbanesoxleyact.asp. [Accessed 2017 Aigust 2017].
[56] 	Investoprdia, "Dodd-Frank Wall Street Reform and Consumer Protection Act," [Online]. Available: http://www.investopedia.com/terms/d/dodd-frank-financial-regulatory-reform-bill.asp. [Accessed 10 August 2017].
[57] 	Investopedia, "Health Insurance Portability And Accountability Act - HIPAA," [Online]. Available: http://www.investopedia.com/terms/h/hipaa.asp?ad=dirN&qo=relatedSearchNarrow&qsrc=6&o=40186&lgl=myfinance-layout. [Accessed 11 August 2017].
[58] 	Object Management Group (OMG), "Data Residency Working Group," [Online]. Available: http://www.omg.org/data-residency/. [Accessed 11 August 2017].
[59] 	Object Management Group (OMG), "Business Process Model and Notation (BPMN)," December 2013. [Online]. Available: http://www.omg.org/spec/BPMN/. [Accessed 10 August 2017].
[60] 	Object Management Group (OMG), "Financial Services Standards," [Online]. Available: http://www.omg.org/hot-topics/finance.htm. [Accessed 10 August 2017].
[61] 	Object Management Group (OMG), "Financial Industry Business Ontology: Foundations," February 2017. [Online]. Available: http://www.omg.org/spec/EDMC-FIBO/FND/. [Accessed 10 August 2017].
[62] 	Object Management Group (OMG), "Financial Industry Business Ontology – Business Entities," August 2016. [Online]. Available: http://www.omg.org/spec/EDMC-FIBO/BE/. [Accessed 10 August 2017].
[63] 	Object Management Group (OMG), July 2017. [Online]. Available: http://www.omg.org/spec/EDMC-FIBO/IND/. [Accessed 10 August 2017].
[64] 	The Internet Engineering Task Force (IETF), "Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)," August 2013. [Online]. Available: https://tools.ietf.org/html/rfc6979. [Accessed 11 August 2017].
[65] 	International Organization for Standardization, "ISO 8601:2004 Data elements and interchange formats -- Information interchange -- Representation of dates and times," December 2004. [Online]. Available: https://www.iso.org/standard/40874.html. [Accessed 11 August 2017].
[66] 	The Internet Engineering Task Force (IETF), "Date and Time on the Internet: Timestamps," July 2002. [Online]. Available: https://tools.ietf.org/html/rfc3339. [Accessed 11 August 2017].
[67] 	Object Management Group (OMG), "Financial Industry Global Identifier® (FIGI™), v1.0," December 2015. [Online]. Available: http://www.omg.org/spec/FIGI/1.0/. [Accessed 9 August 2017].
[68] 	American Institute of Certified Public Accountants (AICPA), "General Ledger Standard," July 2015. [Online]. Available: http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/DownloadableDocuments/AuditDataStandards/AuditDataStandards.GL.July2015.pdf. [Accessed 20 August 2017].
[69] 	ECMA-International, "ECMAScript® 2017 Language Specification (ECMA-262, 8th edition, June 2017)," June 2017. [Online]. Available: http://www.ecma-international.org/ecma-262/8.0/index.html#sec-scope. [Accessed 11 August 2017].
[70] 	International Organization for Standardization (ISO), "ISO/IEC 16262:2011 Information technology -- Programming languages, their environments and system software interfaces -- ECMAScript language specification," June 2011. [Online]. Available: https://www.iso.org/standard/55755.html. [Accessed 11 August 2017].
[71] 	World Wide Web Consortium (W3C), "Cascading Style Sheets home page," 2017. [Online]. Available: https://www.w3.org/Style/CSS/. [Accessed 11 August 2017].
[72] 	World Wide Web Cnsortim (W3C), "Introduction to HTML5," 28 October 2014. [Online]. Available: https://www.w3.org/TR/html5/introduction.html#scope. [Accessed 11 August 2017].
[73] 	Internet Engineering Task Force (IETF®), "Hypertext Transfer Protocol -- HTTP/1.1," June 1999. [Online]. Available: https://www.ietf.org/rfc/rfc2616.txt. [Accessed 11 August 2017].
[74] 	Internet Engineering Task Force (IETF), "The Secure Sockets Layer (SSL) Protocol Version 3.0," November 1996. [Online]. Available: https://tools.ietf.org/html/rfc6101. [Accessed 19 August 2011].
[75] 	Internet Engineering Task Force (IETF), August 2008. [Online]. Available: https://datatracker.ietf.org/doc/rfc5246/. [Accessed 19 August 2017].
[76] 	World Wide Web Consortium (W3C), "Extensible Markup Language (XML)," 10 February 1998. [Online]. Available: https://www.w3.org/TR/1998/REC-xml-19980210#sec-intro. [Accessed 19 August 2017].
[77] 	World Wide Web Consortium (W3C), "W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures," 5 April 2012. [Online]. Available: https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/#intro. [Accessed 19 August 2017].
[78] 	World Wide Web Consortium (W3C), "W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes," 5 April 2012. [Online]. Available: https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/. [Accessed 19 Sugust 2017].
[79] 	World Wide Web Consortium (W3C), "XSL Transformations (XSLT)," 16 November 1999. [Online]. Available: https://www.w3.org/TR/xslt. [Accessed 19 August 2017].
[80] 	Internet Engineering Task Force (IETF), "The JavaScript Object Notation (JSON) Data Interchange Format," March 2014. [Online]. Available: https://tools.ietf.org/html/rfc7159. [Accessed 19 August August].
[81] 	J. Looper, "Mobile A Guide to JavaScript Engines for Idiots," 21 September 2015. [Online]. Available: https://developer.telerik.com/featured/a-guide-to-javascript-engines-for-idiots/. [Accessed 21 August 2017].
[82] 	B. J. G. S. G. B. A. B. James Gosling, "The Java Language Specification, Java SE 7," Oracle, 28 February 2013. [Online]. Available: http://docs.oracle.com/javase/specs/jls/se7/html/index.html. [Accessed 30 August 2017].
[83] 	Oracle, "Java Virtual Machine Specification," Oracle, March 2015. [Online]. Available: http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-1.html. [Accessed 20 August 2017].
[84] 	C. A. E. a. S. J. Gibbs, "Concurrency control in groupware systems," in SIGMOD '89 Proceedings of the 1989 ACM SIGMOD international conference on Management of data, New York, 1989.
[85] 	D. C. a. X. J. C. Sun, "Operational Transformation in Real-Time Group Editors: Issues, Algorithms, and Achievements," in Proc. of ACM Conf. on Computer Supported Cooperative Work, 1998.
[86] 	C. Sun, "OT FAQ," 2010-1015. [Online]. Available: http://www3.ntu.edu.sg/home/czsun/projects/otfaq/#_Toc321146125. [Accessed 21 August 2017].
[87] 	World Wide Web Cnsortim (W3C), "Docment Object Model (DOM)," 19 January 2005. [Online]. Available: https://www.w3.org/DOM/#what. [Accessed 20 August 2017].
[88] 	World Wide Web Cnsortim (W3C), "XML Path Language (XPath)," 16 November 1999. [Online]. Available: https://www.w3.org/TR/xpath/. [Accessed 20 August 2017].
[89] 	Committee on National Securoty Systems (CNSS), "National Information Assurance (IA) Glossary," May 2003. [Online]. Available: https://www.ecs.csus.edu/csc/iac/cnssi_4009.pdf. [Accessed 7 August 2017].
[90] 	OPEN FIGI, "OpenFIGI," [Online]. Available: https://www.openfigi.com/about/symbology. [Accessed 9 August 2017].
[91] 	BusinessDictionary, "Ledger definition," [Online]. Available: http://www.businessdictionary.com/definition/ledger.html. [Accessed 9 August 2017].
[92] 	TechTarget, "Feature Creep Definition," [Online]. Available: http://searchcio.techtarget.com/definition/feature-creep. [Accessed 9 August 2017].
[93] 	Oxford Dictionaires, "fungible," [Online]. Available: https://en.oxforddictionaries.com/definition/fungible. [Accessed 11 August 2017].
[94] 	Constortium for IT SoftwareQuality (CISQ), [Online]. [Accessed 17 August 2017].
[95] 	Constortium for IT SoftwareQuality (CISQ), [Online]. Available: http://it-cisq.org/standards/automated-quality-characteristic-measures/performance-efficiency/. [Accessed 17 August 2017].
[96] 	Constortium for IT SoftwareQuality (CISQ), "Security," [Online]. Available: http://it-cisq.org/standards/automated-quality-characteristic-measures/security/. [Accessed 17 August 2017].
[97] 	Constortium for IT SoftwareQuality (CISQ), [Online]. Available: http://it-cisq.org/standards/automated-quality-characteristic-measures/maintainability/. [Accessed 17 August 2017].
[98] 	Investopedia, "General Ledger," [Online]. Available: http://www.investopedia.com/terms/g/generalledger.asp. [Accessed 2017 August 2017].

Appendices

August 19, 2017		page: 16
image3.png
Global Database Market ($ Billions)

500

400

00
"
200
100
00+
2012 2013 2014 2015 2016

2017
iatonal_@Hadoop&NoSQL _@Other Nonvelational

Market Realist® Source: IDC, BemStein Analysis

image4.tiff
.

s
71.55

.

. 5790

. 45.55
I

34.60

25.29

g— 14.80

P L

717

o
.

. Saas Paas

image5.png
= Non-BTC Blockchain Asset Market Cap 1 Bitcoin Market Cap.

15
1

13

b

1

10

s

s

7

B

s

1

3

2

1

o

P 0P PP PP PP P
Rl R S R R R R

image6.tiff
DIDO RA

Blockchain Software ‘Web Applications

Smart Contracts Distributed Applications

Transactions Operational Transforms

$32BJ23U] 73 S00L

Secure Message Layer

Ledger Global Data Objects

image7.tiff

image8.tiff
Software Product
Quality

Functional

B Maintain-
al
Sutability Ly ez

Potability

image9.png
l System Level

90% <—¢

CODE ANALYSIS
of cost & FINDINGS
risk impact

e—————————— Code Level

Flaws
92%

image10.tiff

image11.tiff

image12.tiff
DIDO RA
Blockchain Software Web Applications

Smart Contracts Distributed Applications

Transactions Operational Transforms

$32BJ23U] 73 S|00L

Secure Message Layer

Ledger Global Data Objects

image1.tiff
: Canonical B
addedtothe

blockchain

Blockchain

Necker Data

7: Every ull rr
Data has o
app)

image2.tiff
I . I

